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CHAPTER 8
SETS AND RELATIONS

8.1 Sets

Our sveryday speech abounds with collective nouns such
as herd, company, swarm, class, litter, collection, bunch, etc.
Examples which use these collective nouns include the following:
a herd of cattle, a company of soldiers, a swarm of bees, a
class of students, a litter of kittens, a collection of stamps,
a bunch of bananas.

It is also possible to find examples which use collective
nouns which may be unfamiliar to you such as the following: a
gam of whales, a pod of seals, a glitter of butterflies, a
singular of boars, a gaggle éf geese;, a hutch of rabbits, an
army of ants, a murmuration of starlings, a jubilation of sky-
larks, and a pride of lions.

In each of the above examples we see how a word, such as
herd, class, pride, etc,, is used to denote a collection of
several objects assembled together and thought of as a unit.
Each of the above collections is well-defined. By this we mean
that we can determine if a given object does or does not belong
to the specific collection being considered.

In mathematics we use the collective noun set to indicate
a well-defined collection. The objects in sets can be literally
anything: numbers, points, lines, people, letters, cities, etc.
These objects in sets are called the elements or members of the

Q@ . Terms such as "set" and "element'" are part of the basic
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language used in the study of all branches of mathematics. In
this chapter, we will concentrate on terms and concepts dealing
with sets and relations between sets.

Here are ten particular examples of sets.

Example 1: The numbers 1,2,3,4,5 and 6.

Exemple 2: The solution set cf the open sentence
2 +5 =x1in (W,+).

Example 3: The "primary" colors red, yellow and blue.

Example 4: The states in the U.S.A. whose names begin
with the letter "M."

Example 5: The numbers 1,2,3,4,5,8,12, and 24,

Example 6: The states in the U.S.A. for which the names
of both the state and its capital city begin
with the same letter.

Example 7: The numbers -2, -1, 0, 1, and 2.

Example 8: The set of whole numbers which are both even
and odd,

Example 9: The numbers 1, 3 &nd 5.

Example 10: The outcome set for the tossing of a die.

Notice that the sets in the odd numbered examples above are

defined by actually listing the elements in the set; and the

sets in the even numbered examples are defined by stating
properties which can be used to determine if a particular object
is or is not an element of the set.
Sets wiil usually be denoted by capital letters,
A, B, X, ¥, ...

Recall that we used "W" to denote the set of whole numbers and

R
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"Z" to denote the set of integers.

There are essentially two ways to specify a particular set.
One way, if it is possible, is actually to list the elements in
the set. For example,

A=1{0,1, 2, 3)
denotes the set A whose elements are the whole numbers 0, 1, 2,
and 3. Note that the names of the elements are separated by
commas and enclosed in braces (}. The second way to specify a
set 1s by stating properties which determine or characterize the
elements in the set. For example,
A = {x: x is a whole number and x < 4}

which is read, "A is the set of all X such that x is a whole
nunber and X is less than 4."

Note: A letter, hsre "x," is used to denote an arbitrary

":" is read "such

element of the set; the colon
that,"
If an object x is an element of a set A, i.e., A contains
x as one of its elements, then we write
X € A,
This can also be read "x is a member of A," or "x is in A," or
"x belongs to A." To indicate that "X is not an element of set
A" we write
x & A,
Thus, for the set A given above we have
O€EA, 1LE€EA, 2€A, 3 €A, and 4 ¢ A,
Let us rewrite the Examples 1-10 given earlier, in order

[Jiﬁzillustrate the above remarks and notation. We shall denote
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the sets by Ay, Az, Az, ...s Ao respectively.

Exanmple
Example
Example
Example

Ixample
Example

Example
Example
Example

Example

1':
21':
3

Yo,

5':
6':

T
81:
9':

10"

Ay
Az
Ag
Ay

Ag
Ae

Ay
Ag
Ag

= {1: 2, 3, 4, 5, 6}
{x: X € Wand x = 2 + 5}

il

{red, yellow, blue}

il

{x: x is a state in the U.S.A. whose

name begins with the letter "M"}
= [1: 2: 3: 4: 6: 8: 12: 24}

{x: x is a state in the U.S.A. whose

name hss the same first letter as the name
of its capital city]
{‘2: '1: O: 1: 2}

{x: x € W and x is even and x is odd}

{1, 3, 5}

A,o = {x: x is an outcome of a toss of a die)

In Example 10' we could also specify the set A;; by listing the

numbers 1, 2, 3, 4, 5, and 6 as outcomes:

Ay = {l: 2, 3, u: 5, 6}

In Example 8! notice that the set Ag is in fact the empty set

because there are no whole numbers that are both even and odd.

The empty set 1s also called the null set. It is customarily

designated by the symbol "&," or by "{ J."

8.2 Exercises

1.

2.

w

Find the eight elements in the set A,. Refer to a map if
necessary.
Find the four elements in the set Ag. Refer to & map if
necessary, ,
What relationship exists between the sets A, and Ao ?

10
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4, What relationship exists between the sets A and A,?
5. List the elements in the sets:
(a) Az
(b) As
6. Specify the followlng sets by stating a property which

determines or characterizes the elements in the set.

(a) As
(b) A,
(C) Aq

T, List four essentially different sets that you have studied
in previous chapters of this book.
8. Find ceveral properties other than the one used in Example

8 which can be used to characterize the null set.

9. Explain why each of the following is true, or is not true.
(a) T € A,
(b) Delaware is an element of set Aa.
(c) 0 € A,
(d) x ¢ A,

10. State a property that is true of all the sets Ay, - Ay .

8.3 S8et Equality and Subsets

Let A (0: 1, 2, 3]
{1, 0, 3, 2}

Observe that set A and set B contain precisely the same

angd B

]

elements although they are not listed in the sgame order. A andg
B are really the same set. We shall indicate this fect by writing
A = B.

11
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Although this is read, 'set A is equal to set B," it means that
set A and set B contaln precisely the same elements and that we
do not have two sets but only one.
In general, if "A" denotes a set, and "B" denotes a set,
the statement
A =B
means that "A" and "B" denote the same set. If sets A and B are
not the same set then we write
A # B.
Example 1: If X = (0,1} and ¥ = {x: x € W and x < 2}
then we have X = Y,
Example 2: If V = (red, green, blue)
and Y = {green, blue, red)
then V =Y. (Note that the order in which the
elements are listed is immaterisal,)
Example 3: If V = {red, green, blue}
and X = {x: x is a color in the rainbow}
then V # X, because there are other colors
such as yelléw in the rainbow. Yellow is an
element of X, but is not an element of V.
Since each of the colors red, green and blue is also a
color in the rainbow, it is clear that every element of set V
is an element of set X, or that V is a subset of set X, or that
set V is contained in set X. We denote the relation " is a sub-
set of " by the symbol " c.," Thus in Example 3, V < X,
Definition: Set A is & subset of set B, denoted by A € B,
if and only if every element of set A is an

element of set B.

‘ f
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Notice that the above definition implies that if A € B and

X € A, then x € B.

(1}, B = (0, 1, 2}, ¢ = (3, 4, 5, 6},
(0, 1, 2, 3, 4, 5}). Then we see that

Example 1: Let A
and D

AcCcB, BeD, AC D,
Example 2: Let X = (a, b, ¢} and Y = (¢, a, b}.
We see that X © Y because every element of X is
an element of Y, Furthermore Y < X,
Notice in Example 1 that C is not a subset of D because C con-
tains the element 6, whereas D does not contain this element.
This illustrates
Remark 1: If set A is not a subset of set B, then set A
contains at least one element that is not con-
tained in set B.
Notice also that Example 2 shows that A € B does not exclude the
possibility that A = B, In fact, we can make the following
general remark concerning how equality of sets is related to
the 1dea of subset:
Remark 2: If A is a set and B is a set, then A = B, if
and only if A c B and BC A,
Let us 1llustrate the above statement.
IfA=1(0,1, 2, 3} and B = (1, 0, 3, 2} then clearly
A © B because every element in set A is also an element in set
B. Also B c A because every element in set B is also an element
in set A, Thus, we conclude that A = B.
From the above we see that every set has at least one subset,

T}jely, itself. In fact,
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Remark 3: If A is any set, then A C A,

We can examine a given set to see what subsets it contains,
For example, what subsets may be formed from the set A = {2,3}?
First of all, according to the above remark A is a subset itself.
Thus {2,3)} € A or equivalently {2,3) < {2,3]). Also it is clear
that set A yields two subsets each of which contains a single
element, That is

{2} = A and {3} c A.

It is curious, but true, that the empty set is a subset of
any set, This conclusion is logically forced upon us by Remark
1 above, because if we assume that @ is not a subset of A, then
Remark 1 implies that @ containg at least one element that is
not an element of A. But & contains no such element since by
definition & contains no elements. Thus we cannot say that ¢
is not a subset of A, i,e., @ is a subset of A. Since the
above argument would apply to any set A, we conclude with

Remark 4: If A is any set, then ¢ ¢ A, Observe that the

set A = {2,3) has exactly four subsets:
{2,3}, {2}, {3} ana 4.
Of these four subsets of A we shall say that {2}, {3) and & are
proper subsets of A and that {2,3)} is not a proper subset of A.
Note that proper subsets of & set do not contain all the elements
of the given set. In general we have the following
Definition: A is a proper subset of B, if and only if
A c B and A # B,

14



8.4

-9 -

Example 1: Let K = (-1, 0, 1}. Then each of {-1}, {0},
{1}, {-1, 0}, is a proper subset of K.
Note {-1, 0, 1} is a subset of K but not a
proper subset of X.

Example 2: Let X be any set except the empty set. Then
because we know the ¢ € X by Remark 4, and
because we are given @ # X, we conclude that

# is a proper subset of X.

Exercises

Let ¢ = {0, 1, 3, 7} and H = {7, 1, O, 3}. Explain why
G = H, or why not,
IfG=1{(0, 1, 3, 7} and L = [x: x € W, x < 10} then explain
why:
(a) GcL (b) G £AL
Mr, Jones has five children: Tom, Joen, Judy, Harry and
Dick., Let B = {Tom, Dick, Harryl}, G = (Judy, Joan}
R = {Tom, Joan, Harry, Judy].
(a) Explain why B is a subset of R, or why not.
(v) Explain why G is a subset of R, or why not.
Let E = {x: x € Wand x is even) and P = {x: x is a positive
power of 2}, i.e., P = (2, 4, 8, 16, ...].

Explain why the following are or are not true:

(a) PCE (a) 100 € E

(v) P=E (e) 100 € P

(c) 0€E (f) Ec P
(g) #cp

15
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Let A = {5}.
(a) List all of A's subsets,
(b) 1List all of A's proper subsets.
Let B = {5,7,9}.
(a) List all of B's subsets,
(b) List all of B's proper subsets.
Using the data obtained in Exercises 5 and 6 above make
a conjecture concerning
(a) the number of subsets in a set containing 4 elements.
(b) the number of proper subsets in a set containing 4
elements.,
(e} the number of subsets in a set containing 5 elements,
(d) the number of proper subsets in a set containing 5
elements,
(e) the number of subsets in a set containing n elements.
What can we conclude if we know that A is a subset of B but
that B is not a subset of A?
What conclusions, if any, can you draw from the following?
a) XCYand Y < Z,
) Rc S and TSR,
c) MC N and N< Q.
) X©cG, YCT, and T « X,
) AcQ, Q< R, and R C A,
f) PecQ, and R < Q.
Let A = {p,q,r}. Explain why the following are correct or
incorrect in the use of "<" and "€.,"

(a) p €A (d) Ac A

16
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(b) pcA (e) (p} €A
{c) (p) caA (f) gca

11. Which of the following sets are the same?

(a) {x: x is a letter in the word "follow"}
(b) ({x: x is a letter in the word "wolf,"}

(c) the set of letters in the word "flow."

12. Explain why the sets @ and {¢) are different sets.
13. let XcYand YS Z. Assume x € X, y €Y, z € Z,

and also assume p £ X, a Y, r ¢ Z.

Which of the following must be true? Explain.
(a) x €2 (¢) z ¢X () a¢X
(b) yex (d) pey (f) r¢X

8.5 Universal Set, Subsets and Venn Diagrams

In order to avoid certain logical difficulties, we will
assume that in a given discussion the sets weing considered are

subsets of a set S, called the universal set. We have already

seen situations where the idea of a universal set played an
important role. For example, in finding solution sets for open
sentences we have seen that results depend on the domain or
universal set considered.

The solution set of the open sentence

3 +x =2

is {-1)} if the universal set considered is the set Z, whereas
it is @ if the universal set is set W.

In order to help visualize our work with sets we shall draw

O
[]{U:‘diagrams, called Venn diagrams, which illustrate them. IHere we

IToxt Provided by ERI
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represent a set by a region bounded by & simple closed curve,

for example:

A B c

We shall usually indicate the universal set S as a plane region

bounded by a rectangle.

A universal set

Subsets of the universal se* will be pictured by regions

enclosed within this rectan, le.

Subsets of a

Universal Set

When we picture sets i this manner we must take care not

to confuse the geometric regions with the sets that these

regions represent, For example suppose that the universal set

S consists of all the students in your school. Suppose the subset
A consists of those students who are studying art, and the subset
B consists of those stuggnts who are studying biology. We can

O picture these sets by means of a Venn diagrem 1ike this:

18
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(7

The regions which represent the subsets A and B are drawn so

that they appear to overlap. This is done so as to provide a
region, namely the overlap, which will represent the subset of
those students who take both art and biology. The othe. portion
of the A~region then represents the set of those students in the
school who study art but not biology. Similarly the other part
of the B-region represents the set of those students in the
school who are studying biology but not art. The region of S
outside of both A and B represents the set of students not taking
art or biology.

Now it may happen that one or more of these regions actnally
represents an empty set. For example, suppose there are no
students in the school who take both art and biology. In that
case the overlap region represents the null set. This information

can be shown on the Venn diagram by placing the symbol "@" inside

()]

Of course, if we knew in advance that there were no members in

the overlap region:

this set we could have drawn the A-region and B-region so that
o )

19
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they did not overlap, but very often when dealing with sets we
may not have such information ahead of time. It is therefore
better to draw the Venn diagram, where the regions appear to
overlap, with the understanding that one or more of these
regions may, on further investigation, actually turn out tc be
empty.

As another example, suppose that our Venn diagram for the

students taking art or biclogy looked like this:
S

The symbol "@" now indicates that there are no elements of A
"outside" of set B. This means that every art student in the
school is also studying biology. Since every element of A is
also an element of B, we now know that Ac B (A is a subset of
B). Notice that this merely indicates that A is a subset of B,
but not necessarily a proper subset of B.

Suppose, for instance, that we find out that A is actually
a proper subset ot B and we want to show this information on the
earlier Venn diagram. We need & way of indicating that there
is at least one element in B which is not in A, We shall do
this by placing the symbol "x" inside the portion of the B-region

which is outside the A-region:

QB
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This shows that A is not only a subset of B, but also that
there is at least one element in B which is not in A,

Skill in drawing and interpreting Venn diagrams can be
helpful so let us study several further illustrations.

Example 2: Interpret the following Venn diagram:

First of all, B < A, because there are no elements of B
"outside" A. Moreover, set B is not empty, as is indicated by
the "x" in the other portion of the B-region. This "x" also
shows that A is not empty. We cannot tell if B is & proper sub-
set of A, because there is no information indicated for the
portion of the A-region which is outside the B-region. However,
the other symbol "x" outside both regions, indicates that there
is at least one element in S which is not in A. Hence A is a
proper subset of S. We can summarize all this information briefly,
as follows:

gcBeACcS, A#@, A#S, and B # 4,
Example 2: Draw a Venn diagram which will show that A is
a non-empty subset of B, and B is a proper sub-
set of C. (in symbols: A ¥ 46, Ac B, BC C,
B 4 C) We can do this in more than one way,

We can start with a general diagram for the

21
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three sets., On it we indicate first that A € B,

S

Then, on the same diagram, we mark the infor-
mation that B € C by placing additional symboils
"@" in the appropriate regions. To show B is a
proper subset of C we place an "x" in the region

of C which is outside of B, indicating B # C.

AcCcBand Bc ¢ AcCcBand BCC and B #£C

Finally, to show that A # ¢ we enter the symbol

"x" in the remaining region of set A.

29
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Notice that the conditions of the problem forced
us to place an "x" in the "center" region. This
shows that there is an element that is not

only in A, but also in B and in C. We know

now that there are at least two elements in C,
one "within" B and one "outside of" B.

On the other hand, we still do not know whether
or not the remalning two regions of the Venn
diagram represent empty or non-empty sets.
(These are (1) the region "inside" B, "inside"

C and "outside" A, and (2) the region "outside"
A, B and C.) We simply have no information

about them,

8.6 Exercises

1. What information about sets A and B is revealed by each of

the following Venn diagrams?

S 5
(a) (5) Ax ¢
A B |
(.c) ] g (d)
s
) (r)
g [, g x
. J 23
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wn
wn»

2. Draw a Venn diagram to show each of the following for
subsets A and B of a universal set S:
(a) B< A and B # ¢
(bp) AcCc Band A #B

]

(¢) AcBand B=35

(d) Ac Band B#S

(e) 0cAcBcS

(f) BcAand B#@and A=35

3. Interpret each of the following Venn diagrams for subsets

A, B, C of a universal set S.

(a) 1 (d) A p—— B 3

(b)

(£)

24
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Draw a Venn diagram to illustrate each of the followirg
situations for subsets A, B, C of a universal set S:
(&) AcCBcCcC

(b) A=Band C #¢

(¢c) A=Band C=¢

(d) gcAcB=¢C

(e) gcB=ACc

Q

c s

Draw a Venn diagram which shows the following for subsets

A, B of a universal set S:

() There is at least one element in A which is not in B
and at least one element in B which is not in A,

(b) There is at least one element which is a member of
both A and B.

(c) There are no elements in both A and B but there is at
least one element in S which is neither in A nor in B.

(d) Every element of S is either in A or in B.

The following Venn diagram applies to subsets A, B, C of a

universal set S: S

For each of the following statements, write

"YES" if the statement must be true;

"NO" if the statement must be false;

"MAYBE" if the statement may be true or may be false.

(a) There is at least one element which is contained in

20

all three sets A, B, C.
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(b) C is a subset of B.

(¢) A is a subset of C.

(d) C is a proper subset of B.

(e) There is at least one element in A which is not in B.

(f} There is at least one element in C which is not in B.

(g) There is at least one element in A which is not in C.

(n) A is a subset of B,

(1) There are at least two elements in S which are con-
tained in both A and B.

(§) There is at least one element in S which is not con-
tained in any of the sets A, B, or C.

(k) There is at least one element in set B which is not
contained in either A or C.

(1) There is at least one element in set C which is not
contained in either A or B.

(m) There is at least one c@lement in set A which s not
contained in either B or C.

(n) There is at least one element in bothh A and B which is
not contained in set C.

(o) Each element containei in both A and C is also contained

in B.

8.7 Unions, Intersections and Complements

In earlier chapters we considered operations which assigned
new numbers to given ordered pairs of numbers. Now we shall

consider how new sets can be formed from given sets. There are

Q "wo important binary operations that we shall define on sets,
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and one important unary operation., These operations have many
uses in subsequent work., In what follows we assume that the
sets A and B are subsets of a universal set S.

If A and B are sets we shall define a new set called the

union of A and B, denoted by "A U B," as follows:

Definition: A U B is the set that contains those and only
those elements each of which belongs either to
A or to' B (or to both); i.e.,

AUB={(x: x€ Aor x € B}

(Notice that here "or" is used in the sense
"and/or.")

Example 1: If A = {0,1,2,3} and B = {3,4,5)}), then A U B =
(0,1,2,3,4,5].

Example 2: If V = {r~4, green, blue, violet, yellow)

and X {violet, indigo, blue, orange] then

VUX {violet, indigo, blue, green, yellow,
orange, red}.

Example 3: If W is the set of whole numbers and A = {0, 1,
2,3}, then Wy A = W,

Remark 1: From the definition of A U B we see that

Ay B=BUA,

Remark 2: Since A U B contains all the elements of A

and also contains all the elements of B we

can conclude that

Ac (AU B) and B< (A U B).

!
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In the Venn diagram below we have shaded the region which

represents A U B,

S

A U B is shaded

If A and B are sets we now define a new set called the

intersection of A and B, denoted by "A N B," as follows:

Definition:

Example 1.

Example 2.

Example 3.

Example 4.

Example 5.

Remark 1:

Remark 2:

A N B is the set that contains those and only
those elements each of which belongs to both A
and B, i.e., ANB ={x: x € A and x € B}.

If A = {0,1,2,3} and B = {3,4,5}), then A N B = {3}.

If V = {red, green, blue, violet, yellow} and

X = {violet, indigo, blue, orange} then

VN X ={blue, violet]}.

If W is the set of whole numbers and A = (0,1,2,3},
then wN A = {0,1,2,3) = A.

if A = {0,1,2,3}, B = {3,4,5}, and C = {0,3,5},
then (A 0 B) N ¢ = (3} N {0,3,5} = {3].

if A = {0,1,2,3} and B = {4,5) then AN B =

() =4

From the definition of A N B we see that

il

AN B=BNA,
If ANB=¢g, as in Example 5, this indicates
that sets A and B have no elements in common.
In that case we say that A and B are disjoint

sets,

IR
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Definition: A and B are called disjoint sets if and only
if ANB =4d.

In the Venn diagram below we have shaded the region that

5

represents A N B,

A N B is shaded

Besides obtaining new sets by assigning a new set to a pair
of sets it is also useful to define a particular unary operation
on every subset of S. If Aisa given subset of a given universal
set S, we define a new set called the complement of A, denoted
by "E," as follows:
Definition: A& is the set of all elements of a given universe
S that are not contained in A, where A is a
subset of S, i.e.,
R =(x: x €S anc x £ A}.

Example 1: If S = (0,1,2,3,4,5) and A = (0,2}, then
K = {1,3,4,5}.

Example 2: Let S = W, that is, the universal set is the
set of whole numbers. Let E = {x: x € W and
x is even) and 0 = {x: x € W and x is odd]}.
Then E = 0. That is, the complement of the
set of even whole numbers in the set of whole
numbers is the set of odd whole numbers.

Similarly, O = E.

29
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Example 3: If S8 = {0,1,2,3,4}, A = {0,2,4) and E = (3,4},

then
i) K = [1:3]
ii) B = (0,1,2)

iii) Since A N B = {4} we see that
FTsB = [E] = [031:2:3]

The Venn diagram for & is given below, i.e., all of S is
]

shaded except A.

A is shaded

The Venn diagram for A U B is given below. Since A U B is
the set consisting of all elements in S that are not in the set
A U B we shade all of the S-region except the part that repre-
sents A U B,

A U B 1s shaded

8.8 Exercises

1. Let the universal set S be the set of all students enrolled
in your schcol, S = {all students}. Let A, B and C be the
following subsets of S, A = {all 7th graders}, B = {all
boys}, C = {all students who bus to schooll}.

Describe in words each of the following:

—— 40
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(a) K (i) Bn¢C

(b) B (j) BucT

(¢) ANB (k) AU (BUC)
(d) BN C (1) An (BN C)
() AUB (m) AN (Bu?T)
(f) BuUC (n) KU (BUCT)
(g) ANB (o) En (BN C)
(n) EuB (p) AN (BUC)

2. Let the universal set S be S = {0,1,2,3,4,5,6 7,8,9}.
Further, let A = {0, 2, 4, 6, 8}, B = {1, 3, 5, 7, 9} and
C = {2, 3: 5: 7}-

Determine the following:

(a) AUB (g) &
(b) ANB (h) B
(¢) AuUC (1) T
(d) Anc (3) BuC
(e) BuC (x) A0 C
(f) BN C (1) §
3. Using the sets in ExXercise 2 determine the following:
(a) (AuB)UC (c) AN (BNC)
(b) Au (BuUC) (a) (AnB)NnC
L, Using the sets in Exercise 2 determine the following:
(a) Avu (BN C) (¢) AN (BUC)
(b) (AuB)n (AU C) (a) (AnB)U (ANC)

J1
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5. If S = {(-4,-3,0,3,4,7,8,16)
A = (-4,0,8,16)
B = {-3,3,4,8}
¢ = (0,7}
Determine each of the following subsets of S:
(a) AUB (h) EUE
(v) AUB (1) AN (BUC)
(c) ENB (3) (AuB)u (ANC)
(d) ANB (k) AU (BNC)
(e) B (1) (AuB)N (AUC)
(f) AU (AN B) (m) XU (BUC)
(g) AN (AU B) (n) En (BNT)

6. Using the data obtained in the above exercises state some
conjectures concerning the properties of the operations
of union and intersection on any sets A, B, and C. Can
you offer any further evidence to support your conjectures?
T. Let N be the set of natural numbers, i.e,, the set of whole
numbers with zero deleted. Let the universal set be W,
that 1s, the set of whole numbers. Determine if the follow=-

ing are true or false, Explain your answers,

() NUW=W (e) WUN=¢
(b) NN W= (0} (f) WNN=¢
(¢) W= (0} (g) WUN=¢
(d) W=0 (h) WNN=¢

8. Using the definitions of "subset," "intersection," and
"union" write out an argument why the following are true:

Q (a) (ANB)caA (b) (AN B)cAUB,

g2
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9. Using your definitions explein why the following are true:

If A is any subset of a universal set S, then:

(a) AUA=A (e) S=¢g
(b)) ANA=A (f) B =25
(¢) AUEK=s5 (g) AUS=3
(&) AnEK=2¢g (h) Ang=4d

10. If we denote the complement of the complement of set A by
"A" determine what set K is equal to.

11. Copy the Venn diagram below and shade in the set represented

by A N B, A B

S -

12, Let us define a new operation, called the difference of A

and B, denoted by "A\B", as follows: If A and B are subsets
of a universal set S, then A\B = {x|x€A and x¢#B}.

(a) Determine if A\B = A N B,

B\A.

(c) Determine if (A\B) < A.

(v) Determine if A\p

(d) Determine the set represented by the union of A\B,
A N B, ard B\A.
{(e) Determine the set represented by the intersection of K\g
and B\A.
13. Copy the Venﬁdiagram below and shade in the set represented
by (A n B)u (AnB).

e ™
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#EN, Let us define a new operation celled the symmetric dif-

ference of A and B, denoted by " A A B," as follows:
A A B= (A\B) U (B\A).
(AuB)\ (AN B).
{x: x € Aor x € B, but x € A N B}.
(AN B)u (80N B).

Determine if A A B

it

it

(2)
(b) Determine if A A B
(c)

(d) Determine whet set is represented by (A U B) \ (A A B).

Determine if A A B

it

i5. Let the universsl set be Z (the set of 211 integers).
Let A, B, C, D be the following subsets of Z:
A = {x: x is positive}
B = {x: x is negstive)
C = (x: x is less than 10}

D : X is greater than -5}

it
—
b

Determine each of the following sets:

(a) AN B (f) ¢npD

(b) AU B (g) (Anc)Nnpo
(¢) BN C (h) AN {(c N D)
(a) BU C (1) AN (cuy D)
(e) cupD () (Anc)unp

8.9 Cartesien Product Sets: Relations

In earlier parts of this book you often dealt with the idea
of an ordered pair of elements. 1In meny cases you had to dis-
tinguish between the psir (a,b) snd the psir (b,a). For example,

this occured when you discussed operations, mappings, outcome

| sets, lattices, etec. To stress the order of the elements, one
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of the elements in the pair wes designated as the first element
or first coordinate of the pair, and the remaining element was
designated as the second element or second coordinate of the
pair. We shall now make use of the idea of ordered peir in order
to show how a2 new set can be formed from two given sets.

Let A = {1,2,3} and B = {4,6}. From the sets A and B we
form all pairs such that each pair contains an element of A sas
first element and an element of B as second element. These peirs
are (1,4), (1,6), (2,4), (2,6), (3,4), end (3,6). We designsate
the set of these ordered pairs by "A x B." This new set of

— —

simply "A cross B." Thus:

AxB=((1,4), (1,6), (2,4), (2,6), (3,4), (3,6)}

Note: The set A x B is named after the mathematician

Rene Descartes who, in the seventeenth century, studied

such sets.)

Observe that set A contains three elements, set B contains two
elements, and the set A x B contains six elements.

Given the seme sets A und B as above we can also form the
set B x A We have

B xA=((4,1), (4,2), (4,3), (6,1), (6,2), (6,3)}

We see that if we reverse the coordinstes of eech ordered
pair in A x B we obtain B x A, It is important to note that
although B x A also contains six elements, it is not the same
as A x B. In fact, unless A =B, A x B # B x A.

We can illustrate this by graphing the lattice points

thssociated with each of the Cartesian products. In the graph
o
39
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below we see that elements of A X B ere represented by pcints

with crosses, whereas the elements of B Xx A are represented by
AXB
PPy,
6
5
L
3

2 M Bx A
1

f123h56 =

points with circles.

We often form the Cartesian product of a set with itself.

Thus, for the given sets A and B we obtain:

AxA={(1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3:1): (3:2): (3:3)}
BxB= [(Ll-,'-'-), ()“':6): (6:“'): (6:6)]

We can also use tree diasgrams to represent Cartesian products.

Thus we would have:

36
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Set A Set B AxB Set B Set A BxA
4 (1,4) (4,1)
6 (1,6) 4 2 (4,2)

/ =

y 4 (2,4) 3 (4,3)

< 2<6 (2,6) 1 (6,1)
<

Y (3,4) 6 <2 (6,2)
3 (6,3)

6 (3,6)

o]

Set A Set A AXA Set B Set B BXB
1 (1,1) 4 (4,4)
1 <2 (1,2)
/ 3 (1,3) 4
1 (2,1) 6 (4,6)
2 /a (2,2)
\ \3 (2,3) 4 (6,4)
1 (3,1)
3 2 (3,2) 6
3 (3,3) 6 (6,6)

The following examples illustrate other Instances where we
consider the Cartesian product of a set with itself.
Exeample 1: Let the set S represent the outcome set of a
toss of a single die, that is, S = (1,2,3,4,5,6}.

Then S X S would represent the outcome set for

37
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the toss of & pair of dice.

Let T=(5}). Then Tx T = {(5,5)}. Note that

T#TzxT.

Let Z represent the set of integers. Then

Z X Z can be represented by the set of lattice

points in the plane.

Let W be the set of whole numbers. The opera-

tion of eddition on W, denoted by "+," is a

mapping which assigns to every element of W x W

a unique element of W called & sum. In symbols
Wx W——sW.

Under this mapping, any ordered pair (a,b) in

W x W, maps into the sum a + b.

(a,b) ———>a + b

We summarize our ideas about Certesian product sets with

the following definitions:

Definition:

The Cartesian product A x B of two sets A and B
1s the set of all ordered pairs (a,b), where
a € A and b € B.

More compactly we have

Definition:

A xB= {(a,b): a € A and b € B},

Now consider the set

S = (-5,-4,-3,-2,-1,0,1,2,3,4,5}.

The product set consists of all possible ordered pairs of these

elements

Sx8={(x,5): X €8S and y € S}

or
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2]

x S = ((-5,-5), (-5,-4),--=(-4,-5), (-4,-4), (-4,-3)---
(0,-5), (0,-1)---(5,5)]}
Let us select those pairs of the product set in which the
first number x, is related to the second number y by the expression

X is a square root of y

By testing each pair we find the subset
R = ((-2,4), (-1,1), (0,0), (1,1), (2,4)}
We call this subset of a product a relation on S. The elements
of S are related by the expression "is a square root of."
In a similar way consider the set
A= (1,2,3,4).
The product set is
AxA=1((1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)---
(4,3), (4,4)}
Let us select those elements of A x A for which the first
element a is related to the second member y by the expression
2 is less than b or a < b.
It is easy to find that this subset of A x A is the set
Y = ((1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.
Thus a < b 1s & relation on the set A and it is a subset of A x A.
Another relation could be the subset for which a = b. Then
X = ((1,1), (2,2), (3,3), (4,4)3,
or
X =((a,b): 2 € A, b €A, 2and 2 = b}.
The relation a = b -2 would be the subset M = {(1,3), (2,4)].
Generally, any subset of a Cartesian product is a relestion. Thus

0f‘ﬁr A x A, the following are relations:
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= {(2’1), (132)’ (3’1), (153), (u,l), (151;)]
{(2,1), (3.2), (4,3)]
Ry = {(1,1), (2,1), (3,3), (4,2)]

In R; the four elements were picked out at random. However,

¥
-
I [

most useful relations are given by some explicit relational phrase.
To determine the relation we may do the following:
(1) Select a relational phrase.
(2) Flank the phrase on the left by the first element
and on the right by the second element of an ordered
pair. Do this for every element of the Cartesian
product.
(3) Determine the truth or falsity of the resulting
statement.
(4) The subset of ordered pairs that yield true statements
is a relation.
As another example again let
s = {-5,-4,-3,-2,-1,0,1,2,3,4,5}.
The relational phrase connecting the elements of (x,y) is
X 1s the square of y.
Some instances are
(-5,0): -5 is the square of 0 (False)
(0,0): O is the square of 0 (True)
(4,2): 4 is the square of 2 (True)
(4,-2): 4 is the square of -2 ({True)
(2,1): 2 is the square of 1 (False), etc.
The set of ordered pairs for which we achieve true statements is
R = {(0,0), (1,1), (1,-1), (&2), (4,-2)].

" We can speak of this as the "square of" relation and write x = y2.
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If an ordered pair of elements (a,b) is in the reletion R

then we shall express this by writing

{a,b) € R
or by writing

aRb.

We reed this latter notstion es "a is in the relstion R to b."
Thus for the relatiocn X we have (1,1) € X, (2,2) € X, (3,3) € X.
or equivalently, 1X1, 2X2, 3X3, which sre read "1 is in the
relation X to 1," etc.

Similarly for the relation Y we have (1,3) € Y or, equiv-
alently, 1Y3. It may eppesr strange, st first, to see such
statements as "1Y3," However, a femiliar example of the "sRb"
notation is seen when we consider the relation "equality,"
denoted by the symbol "=," on the set W x W. If we write "& = b,"
we mean that "8" snd "b" are different names for the same whole
number. Thus we may have 1 =1, 2 =1+1, 3 =2 +1, 0 =1 -1,

etec. The sentence "a = b" singles out all those ordered pairs
in W x W whose first coordinste is the same as the second
coordinate, i.e., R = {(0,0), (1,1), (2,2),...}. The subset of
811 these ordered peirs therefore defines the "equality" relation
on W, snd we use the symbol "=" to denote this equality relstion.
Instead of writing "eRb" we write "a = b."
We consider e few more examples of relstions.
Example 1: Let D = (2,3,5). We define & relstion L on D
es follows: (a,b) € L or e L b if and only if
& €D, b€ D, and a < b. Thus L = {(2,3), (2,5),

(3,5)}., We could write
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(2,3) € L, (2,5) ¢ L, and (3,5) € L or
equivalently
2 L3,2L5, and 3L 5.
(We usuaslly express the asbove by writing 2 < 3,
2<5, and 3 < 5.)

Example 2: Let A = {2,3,5,6}. We define a relation D on
A as follows: sDb if and only if a € A, b € A,
and a "divides" b.
Hence, D = {(2,2), (2,6), (3,3), (3,6), (5,5),
(6,6)}. We could also write 2D2, 2D6, 3D3, 3D6,
5D5, and 6D6. Observe that Dc (A x A).

Note: We frequently denote the reletion "divides" by

the symbol "|." Then we express the sbove by
2|2, 2|6, 3|3, 3|6, 5|5, and 6|6. The fact
that "3 does not divide 5" could be written ss
35 or 3p5 or (3,5) # D.
Esch of the relations described here can be pictured on =&
coordinate diagram for A x A, Such a diagram is called a

Cartesian Graph. Thus Example 2 can be pictured as follows:

Each lattice point (marked by circles) represents an element of

O A x A, but only those marked "x" belong to the relation D.

JArur Provide Ic
o , 49
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Another convenient way of studying some relations 1is
through the usé of arrow diagrams. This device is also called
8 greph of the relation.

If aRb, then we designate two points and label them "a"
end "b." Because aRb we direct an arrow from the point labeled

"a" to the point labeled "b."

o./——.-\',

Note that if bRa then the direction of the arrow is reversed.

oc/’*'\b

If we have both aRb snd bRs then indicate both by:

S—

If it is the case that sRa then we draw a loop at the

0

point labeled "a."

Thus we can draw the following arrow diagram to represent

the relation D in Example 2 above:

Q

Observe that en arrow is drawn which connects "2" to "6"
because 2|6 and also en arrow is drawn which connects "3" to "6"

O cause 3|6. Note that no arrow joins "2" to "5" because 2

A3
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does not divide 5 (i.e., 2)5). Note also the loops at each
point which indicates that each of the numbers divides itself.
Example 3: Let P be the set‘of all subsets of the set
{1,2}. The set P then is given by
P={d, (1}, (2}, (1,2}].
Consider the relation "is a subset of" denoted
by "<" on the set P. We use an arrow diagram
to indicate which elements of P are subsets of

each other.

{1)

Observe that at each point representing an element of P we
have a loop. This is because the elements of P, namely &, {1},
{2}, (1,2} are sets, and every set is a subset of itself. Also,
"@" is connected to "{1}," "{2}," and "(1,2}" because the empty
set @ 1s a subset of every set. Further, both "{1}" and "{2}"
are connected to "{1,2]" since {1} < {i,2} and {2} < {1,2}). Do
you see that there are nine elements, that is, nine sets of
ordered pairs of elements, in the relation "c" on P?
Example 4: As in Example 3 let P be given by
P = {¢g, {1}, (2}, (1,2}}.
The relation "is & proper subset of,” on the
set P 1s a subset of the relation represented
in the arrow diagram above. If the loops are

removed from that diagram we have a represen-

tation for "is & proper subset of " on P.
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Example 5: Let Z represent the set of integers. Define
the relation S on Z as follows: eSb if snd only
if b is the square of a., Thus

s = {(0,0), (1,1), (-1,1), (2,4), (-2,4),
(3,9)s (=3,9),...}.
Observe that S c (2 x Z).

Example 6: Let C represent the students in a classroom.
Define the relation L on C as follows. Two
students x and y are in the relation L on C if
and only if x lives within 1 block of y. Can
relation L on C be an empty set?

Example 7. The following arrow diagram shows a simplified
family tree.

Tom

The sbove tree indicates that Tom had four chii-
dren, namely Henry, Bill, Mary and Joan. Henry
had one daughter, Emma. Biil and Joan each had
two children whereas Mary hed none. Using the
first letters of their names to represent people
we see that the relation "is & grsndfather of"
is the set {(T,E), (T,G), (T,A), (T,P), (T,F)].
Let us now summarize some ideas assoclated with the concept
O relation., A binary relation (or relation) R from a set A to

ERIC
~ 49
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2 set B is a subset of A x B. If R is a relation from set A to
set B, then R assigns to each ordered pair (a,b) in A x B exactly
one of the following statements:
i) "a is related to b," written "aRb."

ii) "a is not related to b," written "aKb."
Since a relation R from a set A to a set B is a subset of A x B,
we see that every relation is a set of ordered pairs. We shall
be concerned most often with a relation R from a set A to the
same set A, We say, in this case, that R is a relation on the

set A. Here, of course, R< (A x A;.

8.10 Exercises

1. Using Example 7 in 8.9, 1list the elements in the following
relations: (Note: Represent each person by the first
letter of his name.)
() 1s a father of (d) is an uncle of
(b) 1is a brother of (e) 1s s sister of
(¢) 1is a grandmother of

2. Let P = {1,2) and Q = {2,3,4). Determine the following

Cartesian products:

(&) PxQ (¢) PxP
(b) Qx P () @x4q
3. Copy the coordinate scheme given below on your paper.

Using Exercise 2 sbove, graph the following Cartesian

products using the symbols indicated:
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) graph P x Q using crosses (x)
b) graph Q x P using circles (o)
) graph P x P using triangles (a)
d) Determine the following:
(1) (pxQ)N (Q x P)
(2) (pxP)N (Q x P)
(3) (PxpP)Nn (PxQ)
(4) Ppx (PN Q)
(5) (PxP)uU (PxQ)
(6) Px (PUQ)
(e) On the basis of your answers to 3 (d) above make
one more conjectures about the properties of "x."
b, Let M = {1,2}, N = (2,3}, and P = {4,5].
(a) Determine the following:
(1) (MxN)Uu (M x P)
(2) Mx (NU P)
(v) What do you observe?
5. Let A = {0,2,4} and B = {0,1,2}. Let R be the relation
"{s greater than," denoted by ">," from A to B, i.e.,
aRb if ané only if a > b, where a € A and b € B.

ERIC (2a) Write R as a set of ordered pairs.
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Of what set is R a subset?

Explein why OR2, or why not.

Explain why 4R3, or why not.

B = {2,4,5,8,15,45,60}. Let R be the relation

"div.des,”" denoted by "|," on the set B, i.e., aRb if

{v)

only if a|b.

Write R as a set of ordered pairs.

Of what set is R a subset?

Represent the set R by means of an arrow diagram.
Explain how your diagram does or does not indicate

the following:

(1) 2J2 (3) 245
(2) 24 (5) 4sl5
(3) 2|8 (6) 60|60

Let S be the set of all subsets of the set {x}.
Draw an arrow diagram to represent the relation "is
a subset of," denoted by "<," on the set S.

Let T be the set of all subsets of the set {x,y,z}.
Draw an arrow diagram to represent the relation "is

a subsc¢ of," denoted by the "<," on the set T.

Let A = {1,2,3,4). We define a relation R on A as the set

of ordered pairs of numbers designated by crosses (x) in

the

coordinate diagram of A x A given below.




(a)

(b)

(e)

(v)
(c)
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Explain why each of the folliowing is true or felse:
(1) 1R (5) 4#3

(2) 2r2 (6) uge

(3) 3R (7) A4ps

(4) 2R4 (8) 3K3

Find {x: (x,2) € R}, that is, find &ll the elements
in A which are related to 2.

Find {x: 4Rx}, that is, find all the elements in A
to which 4 is related.

Is every relation a mapping? Explain.

Is every mapping a relation? Explain.

Let the relation R from A to B to sketched on the
ccurdinate diegram of A x B. What test could one
devise in order to determine whether or not R is a

mapping of A into B?

10. Research Problem: If set A has m elements and set B has

n elements, how many different relations could we define

from A to B? Experiment and write a report of your

findings.

8.11 Properties of Relations

In thls section we shall consider a relation R only if it

is a subset of the Cartesian product of some set A with itself.

That 1is,

RCAXxA

\)fgain we shorten this by saying R is a relation on the set A.
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Consider the set

A= [2:3:5:6}

and the relation on it "divides." This relation is the subset
of A X A

D ={ (2,2), (2,6), (3,3), (3,6), (5,5), (6,6) }

and illustrated by the following diagram.,

This relation D has a particular property indicated by the
fact that there is a loop for each element of the set A, Since

2|2, 313, 5|5, 6|6, we see, that for each element a of A
aDa or (a,a) € D

We describe this property by saying D is a reflexive relation
on A,

oomilarly, the relation "<" on the set P = (g, {x}, (¥},
(x,¥)}, as given in Example 3 in 8.9 is a reflexive relation on
P. Again, the arrow diagram indicates this reflexive property
by a loop at each point,

The relation "is a proper subset of" on the same set P, as

o0
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given in Exemple 4 in 8.9 is not & reflexive relation on 2,
because it is not true that a set is a proper subset of itself.

Let us meke a precise statement concerning the property of

reflexivity that s relation on a set may or may not possess.

Definition: Let R be a relation on a set A. R 1s called a
reflexive relation on A if and only if, for
every a € A, (2,2) € R or 2Ra. In other words,
R is reflexive on A if and only if every element
in A is related to itself.

Question 1: Let S be the relation on Z given in Example
in 8.9, that is
S = {(0,0), (1,1), (-1,1), (2,4), (-2,4),...}.
Is S reflexive on Z? Explain.

Question 2: Let V = {1,2,3,4,5}. Let R be the relation on
V given by R = ((1,1), (1,2), (2,2), (2,3),
(3,3), (&4,4), (5,5)}.

Is R reflexive on V? Explain.

Question 3: As in Example 6 of 8.9, let C represent the
students in a2 classroom. Let L denote the
relation "lives within 1 block of" on C. Is
L reflexive on C? Explain.

Certainly, one of the most basic relations that we encounter

is that of "equality," denoted by "=." For exsmple, if W is

the set of whole numbers then x = x for 211 x € W, Hence
equality is areflexive relation on the set W. (In fact equality
is reflexive on sny set.) Another important property of the

O relation equality is the following: If X, y sre whole numbers
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end x =y, then y = x. We express this property by sa;'ing
that equality is 8 symmetric relation on the set W.

Again let C represent the students in & certein school and
L denote the relation "lives within 1 block of" on C. It is
evident that if Bill lives within one block of Jim, then Jim
lives within one block of Bill. In general, if X lives within
one block of y, then y lives within one block of xXx. The relation
"lives within one block of" is a symmetric relation on C.

As another example, suppose that M represents only the
male children (boys) in the school and let B denote the relation
on M defined by "is a brother of." It is clear thet if Bill is
a brother of Jim, then Jim is a brother of Bill. In general if
X €Mand y €M, then xBy implies yBx. The relation B is a
symmetric relation on M,

Now suppose that C is the set of gll children in the schocl
(including girls es well as boys); then we could have xBy but
not yBx (for example suppose Jim is & brother of Jane). Thus
the relstion''brotherhood" is not symmetric on set C, although
it is symmetric on set M. The above examples suggest the rollow=-
ing definition:

Definition: Let R be a relation on a set A and let a end

b be any elements of A, We ssy R 1s a sym-
metric reletion on A if and ~nly if aRb implies

bRe.

Exemple 1: Let K = {1,2,3}. An easily found relation R
on K is the Cartesisn product KxK. Since KxK
< KxK, KxK is a relation R on K. We find that

£y




- h7 -

R = ((1,1), (1,2), (1,3), (2,1), (2,2),
(2,3), (3,1), (3,2), (3,3)).
Note that 1 R 2 implies 2 R1l, 1 R 3 implies
3 R1l, ete. If we consider the arrow diagram

of R on K we observe

that R 1is a symmetric relation of K since when-~
ever there is an arrow from a to b there is a
corresponding arrow from b to a, Recall that
the loops at each point signify R 1s also a
reflexive relation on K.
Example 2: Let K = {1,2,3,4,5} and consider the relation
R on K defined by "evens ¢r odds;" that is, if
a, b € K, then a R b if and only if a and b are
both even whole numbers or both odd whole num-
bers. This means that
R = {(1,1), (1,3), (1,5), (2,2), (2,4),
(3,1), (353), (3,5), (4,2), (4,4),
(5,1), (5,3), (5,5)}.
Notice that (1,3) € R and (3,1) € R since 1 and
3, regardless of the order in which you consider
them, are both odd whole numbers in K. 1Is it

o always true that whenever (a,b) € R, it follows

-
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that (b,a) € R? If so, then we may say that the
relation R is symmetric,

Example 3: Let J = {1,2,3,4). Let us define » relation
S on J es follows: If e, b € J then aSb if
and only if 2 # b. Thus 1S4 because 1 # 4,
Also 481 because 4 # 1. The arrow diagram for
S on J indicates that S is a symmetric relstion

on J.

Exemple 4. Let Z be the set of integers. The relation
"less than or equal to," denoted by "<" is
not a symmetric relation on Z because for all
2, b €Z, & b does not imply that b < =a.
For example, 3 < 4 does not imply 4 < 3.

The relation described in Example 4, that is "<" on Z is

not symmetric.

The next property that we shall exemine is illustrated by
the following: We know for the set W of whole numbers that if
a =band b =—c, then 2 = ¢c. The relation of "equality" is
said to be a trensitive relation on W. The general property is
given in the following definition.

Definition: Let R be a relation on a set A where a, b, and

¢ are any elements of A, VWe say that R is a
transitive relation on A if and only if when-
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Example 2:
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ever aRb and bRc, then aRc.
Let Z be the set of integers and let R be the
relation on Z defined by "x is less than y."
Then R is a transitive relation on R since
if x <y end y < z, then x < 2z,

In particular, we note that not only do we have
0< 7 and 7 < 100, we also have 0 < 100.
Again, not only do we have -5 < -3 and -3 < -1,
but we also have -5 < =1.
Let H = (1,2,3,4)}. Let us define a relation
R on H es follows:

R = ((1,2), (2,3), (1,3), (3,4), (4,1)]}.
If we exemine the arrow diagram of the relation
R on H we see that not only do we have 1R2 and
2R3, but we also have 1R3.

2

i

So far so good. But now observe 1R3 and 3R4.
Does this imply that 1R4? It does not! Actual-
ly the arrow points from 4 to 1. This means

4R1 and indeed 1R4 is not in the relation.

Since the transitive property fails for at

least one triple of elements of H, we say that
R is not transitive on H.

P
-
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Example 3: Let B = (2,3,6,12) and let D be the reletion
"divides" on B. The arrow disgram below in-
dicates that 3|6 snd 6]|12. We therefore check
to see if 3|12. The errow disgram indicates
this is indeed so. Next we observe that 2|6
and 6|12, and we note that 2|12.

In the present case, these two verifications
ere sufficient to show that D i5 & transitive
relation on B. (All the other possibilities
are trivial.)
We have pointed out in this section that the important re-
lation of "equality'" on the set W satisfics three properties,
namely, the reflexive, the symmetric and the transitive proper-

ties. That is.

(1) Reflexivity. For every whole number a2, a = a,
(11) Symmetry. For sny whole numbers g snd b whenever
a = b, then b = a.

(11i) ‘Transitivity. For any whole numbers 8, b, end ¢,

whenever a = b and b = ¢, then 2 = c.

In the next section we shall see that if a relation on &

set has these three properties some important results can be
O
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derived. Any relation on & set which has these properties it called

an equivalence relation. Thus we have the following

Definition: A relation R on a set A is an equivalence

relation if and only if
(1) R is reflexive; that is, for every a € A,
eda.
(2) R is symmetric; that is, for every & and
b in A, whenever aRb, then bRa.
(3) R is transitive; that is, for every &, b,
and ¢ in A, whenever aRb end bRec, then sRc.
Example 1: Consider the relation defined by "has the
same first name as'" on the set C of students
in a classroom. We check to see that thu re-
guirements in the above definition are satis-
fied. Let x, y end z be any students in the
class. Then
(1) x has the same first name as X;
(i1) 1f X has the same first name as y,
then y has the same first nsme as X;
(111i) 1if x has the same first name as ¥ and
VvV hes the same first name as 2z, then
X has the same first name as z.
Since each of the sbove is true, the relation
defined by "has the ssme first neme as" is (1)
reflexive, (ii) symmetric, end (iii) trensi-

tive on C, and hence is an equivalence relation

37
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Consider the relation "c" on all the subsets
of A = (a;b}. We find that "<" is reflexive
snd transitive on A, but although (a} < [a,Db}
it is not true that [a,b} < {a}. We see that
the relation is not symmetric on A. Hence it
is not sn equivalence relation on A.

Let P be the sel of all people in the United

States, and let T be the relation "has the

seme blood-type as." (We .ay "aTb" if and

only if, a has the same blood-type &s b.) Is

T an equivalence relation on P? Yes, because

(1) T is reflexive on P. (Everyone has the
same blood-type as himself.)

(2) T is symmetric on'P. (Whenever a has the
same blood-type as b, then b has the same
blood-type as a.)

(3) T is transitive on P. (Whenever g has the
same blood-type as b, end k has the same
blood~-type a3 ¢, then a has the same blood-
type as ¢.)

Let B be the set of all savings banks in fhe

United States, and let D be the relation on B

defined by "pays the same interest rate as."

We readily verify that D is reflexive, symmetric

eand transitive on B, and hence D is an equiva-

lence relation on B,

o8
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Example 5: Let T be the set of meximum temperatures record-
ed for each day of the year 1966. (T is there- ‘}
fore represented by a 1list of 365 temperature
readings.; Let R be the relation on set T de-
fined by: xRy if end only if temperature x
differs from temperacure y by less then two
degrees. Is R an equivalence relation on the
set T? Let us check each requirement,

(1) Is R reflexive? Yes, beceuse each temper-
ature reading certainly differs from it-
self by less thean two degrees.

(2) Is R symmetric? Yes, because Whenever
temperature x differs from te¢perature y
by less than two degrees ther: cemperature
Yy certainly differs from temperature Xx by
less than two degrees,

(3) Is R trensitive? No, because if temperature
X differs from temperature y by less then
two deg'rees sand temperature y differs from
temperature .z by less than two degrees, it
does not follow that temperature X must

differ from temperature z by less than two

degrees. (Suppose for exemple that x is

' 1% degrees higher than y end y is 1%
degrees higher than z. Then X is 3 degrees
higher then z!) Thus, slthough the re-
lation R is both reflexive and symmetric,
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it is not transitive and hence is not en equiva-
lence relation on the set T.

Let K = {1,2,3)} witr a relation defined on it
which is 1llustrated by the arrow diasgram below.

At e

Examine this diagram and convince yourself that
the relation illustrated is (1) reflexive, (ii)
symmetric, and (iii) transitive on K, and hence

is an equivalence relation.

1. Let E = {1,2,3)} with the following relstion R defined on it.

R = [(1:1): (1)2): (213): (2:2): (3:3): (2:1)}
(2) Explain why R is a relation on E.

(p) Draw en arrow diagram which represents R on E.

(c) Explein why R is or is not (1) reflexive, (2) symmetric,

(3) trensitive

2, Let S be & relstion on & set F, where F = {1,2,3,4) end
| S = [(1:1): (1:3): (2:2): (2:3): (2:1): (3:2): (3:3): (3:“):

(4,1)}.

(¢) Drew en srrow disgrem for S.

(v) Explain why S is or is not (1) reflexive, (2) symmetric,

(3) trensitive.
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3. Each of the following open sentences defines & relation on

the set W of whole numbers, Determine for each if it is

or is not a reflexive relation on W.
| () & 1s less than or equel to b.
(vb) & =8 =0,
(¢) & divides ).
(d) & 1s greater than b.
(e) 2 is equal to b.
(f) the square of & is b.
(g) e - b is divisible by 5.
? b, In Exercise 3, determine which relations are symmetric on W.
1 5. In Exercises 3, determine which relations are trensitive on
Ww.
6. Which of the relstions in Exercise 3, if sny, sre equiva-
lence relstions.
7. (2) When is a relation R on a set A not reflexive?
(b) When is s relation R on & set A not symmetric?
(¢) When is a relation R on & set A not trensitive?
8., 1let A = {1,2,3). Consider the following relations on A:
R, = {(1,1), (1,2), (1,3), (2,1), (2,3)]
Re = ((1,1), (2,3), (3,2), (1,2), (3,1)}

Ry = [(1:2): (2:/3): (1:3)}
Ry = [(1:1)}
Rsg = Ax A

Determine which of these relations is, and which is not

(e) reflexive

(v) symmetric
(c) transitive. 61
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Exemine the relation defined by "is a brother of" for a
set of people with respect to

(e) reflexivity,

(b) symmetry,

(¢) transitivity.

Let A = {2,4,6). Consider the following relations on A:
R = ((2,2), (4,2), (4,4), (4.6))

Ra = ((2,2), (4,6), (6,4)}
Ra =A XA

R, = ((2,2))

Rs = ((2,4)]

(2) Determine which of these relastions is (1) reflexive

(2) symmetric (3) transitive, on the set A,
(b) Indicate which, if any, are equivalence relations on A.
Let L be a set of lines in the plane and let P be the re-
lation on L defined by "4, is parsllel to £,." Determine
whether or not P is (a) reflexive, (b) symmetric, (c)
transitive, (d) an equivslence relation. (Assume & line
is parallel to itself.)
Let S be the collection of subsets of {x,y,z}. If A and B
are elements of S the following describe relations on S:
(1) "Ac B"
(11) "A < B and A is not equsl to B
(111) "A is disjoint from B"
Determine which of the esbove relations cn S are (a) reflexive
(b) symmetrie, (c) transitive,
A relation R on a set A is called irreflexive if and only

if a K a, for all a € A.
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(2) Which of the relations in Exercise 3 ebove are
irreflexive?
(b) Which of the relations in Exercise & above are
irreflexive?
{(c) Which of the relations in Exercise 10 above are
irreflexive?

(d) Which of the relations in Exercise 12 above are

irreflexive?
*14, Definition: ILet R be & relation on & set A where & end b

ere any elements of A, We say R is an snti-
symmetric relastion on A if and only if when-
ever aRb and bRe;, then & = b,
() Which of the relations in Exercise 3 sbove ere
enti-symmetric?
(b) Which of the relations in Exercise 8 above are
anti-symmetric?
(c) Which of the relations in Exercise 10 above are
anti-symmetric?
(d) Which of the relations in Exercise: 12 above are

enti-symmetric?

8.13 Equivalence Classes eand Partitions

Examine the drewing below in which we have drawn a closed
curve sbout a set of eleven geometric figures. Designate this

set of figures as G.
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Not all of the figures heve the same number of sides. In fact
there are four 3-sided figures (i.e., 4 trisngles), four Y4-sided
figures (i.e., 4 quadrilaterals),ztwo 5-sided figures (i.e. 2
pentegons) and one 6-sided figure &i.e., 1 hexeagon).

We define a reletion R on the set G as follows: If X end
Y are eny elements of G we sey that xRy if and only if x and ¥y
have the same number of sides.

Thus any two triangles in G sre in the relation R to eech
other wheress & triangle and a& quadrileteral ere not in the
relation R to each other.

Because every geometric figure in G hes the same number of
sides as itéelf, we see that R is reflexive on G. If x has the
seme¢ number of sides es y, then y hes the same number of sides
&S X, Hence, R is symmetric on G. Also if X hes the same number
of sides as y and y has the same number of sides as z, then x
hes the same number of sides as z, Thus R is transitive on G.
From the ebove we conclude thaet R 1s an equivelence relation on G.

Now examine the effect of the equivalence reletion R on the
set G, It is importent to note that the relation R effects e
separetion of the elements of G into disjoint subsets. Eech of

these subsets contains exactly those geometric figures which
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have the same number of sides. (Seec how this is indicated in
the drawing sbove.) Designate these subsets of G as T (the set
of triangles); Q (the set of quadrilater- .s), P (the set of
pentagons), and H (the set of hexagons), The collection of
subsets of G
{(T,Q,P,H}
produced by '‘the equivalence relation R on G is called a part-
ition of G.; )
The subsets which form the partition of G have two important
propertics:
Property 1: The union of the subsets T, Q, P, and H of G is
the set G. That is TUQU PUH =G
Property 2: The subsets T, Q, P, end H of G are pairwise
disjoint. This means that the intersection
of any two distinct subsets is the empty set.
This is true because a geometric figure cannot
be both a triangle end a quadrilateral. Hence
TNQ =¢g., Similsrly TN P=4, TN H = ¢,
QN H=¢, and PN H = ¢,
It is no sccident that R effected & partition of G into pairwise
disjoint subsets whose union is G. We obtainéd such a partition
of G beceuse R is an equivalence relation on G. The most signif-
icant property of an equivalence relation on & set is that it
alweys partitions the set into pairwise disjoint subsets whose
union is the given set. .
We could also say that an equivalence relation R on é.non-

empty set A partitions the set by putting those elements which
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are related to each other in the uvame subset of A. Each of these

suisets is called an equivalence class. In the example above

T, Qo P, end H are equivalence classes, The following examples

will 1llustrate many of the idess examined above,

Example 1:

Example 2:

-

ILet us define a relation R on the set Z of .
integers as follows: Let x end y be any two
integers. We say xRy if end only if both Xx

and y are even or both x and y are odd. Note:
Zero is even. Thus -3R7 but -3K8. The re-
lation R is an equivalence relation on Z,
(prove this.) Moreover the relation R estab-
lishes two subsets of Z:

E={x: x¢2, and x is even} and

0 ={(x: x€Z, and x is odd}.

Bvery integer in Z is either an element in E or
an element in O, but never an element in both

E and O.

(1) EVO0=2, end

(11) EN o = 4.

The enquivalence relati?n R ¢ii Z effects a
-artition on Z. This pertition is {E,0)}. E
and O are equivalence classes in this partition.
Let A = {1,2,3,4,5,6,7,8,9,10,11,12). We define
e relation R on A as follows: Let g and b be
any elements of A. We say aRb if and only if a
end b have the seme remainder when they are

divided by 4. It is easy to see that R is en
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equivalence relation on A which determines the
following subsets of A:

B = (1,5,9}, By = (2,6,10}, By = (3,7,11},

B, = (4,8,12).

We note that B U B, U Bs UB, = A end also
that B, N By =@, B, N By = ¢, B, N By, = ¢,

Bo N By =g, Bg N B, =, By N By = 4.

Thus R effects the partition (B, ,B,,B;,B,} on A,

Let C be the set of students in a class. It is
clear that the relation "has the same first

neme as" is an equivalence relation on C. Further,
this reletion partitions C into equivalence
classes. (Exemine your own class.) It could
happen that every student had a different neme.
If in such a class there are twenty students we
find thet the equivalence relation still parti-
tions the set. Here each equivalence class would
have in it a single element. Thus, the parti-
tion would be a set having twenty equivalence
clegses as elements.

Let A = {0,1,2}. We find that there are five
different possible partitions of A. These are,
(1) ( (0.1,2} )

(11} ( (0}, (1,2} )

(111) ( (1), (0,2} )

(iv) ({2}, (0,1} )

(v) f{o}, (1}, (2} )

67



Example 5:

- 62 -

Each of the five sets sbove is a partition of A.
Again we see that the elements of a partition
are sets. In (ii) the elements that make up

the partition { {0}, (L,2) } are the equivslence
classes {0} and {1,2}. We observe that

(o} u {1,2} = {0,1,2) = A, Also {0} N {1,2} = 4.
Similar statements are possible for (1), (iii),
(iv), and (v).

Let P be set of all people ir the United Statec
and let T be the relation on P defined by "has
the same type blood as." Wwe saw in Section 8.13
that T is an equivaience relation on P. Hence

T partitions P into equivaience classes, These

equivalence classes are called "blood groups."

We are seldom interested in a set unless some relation or

8.14 Evercises

operation has been defined on the set. 1In this section we have
seen hat defining an equivalence relation R on a set A yields

a partition of A into equivalence classes. We might say that

the relavion R on A gives & "structure" to the set A. Of course
different relations defined on A yield different structures. We
shall encounter meny ways of structuring sets. The study of
structures on sete is considered by some mathematicians to be the

very essence of mathematics itself.

Let A = (1,2,3,4,5,6}. Explein why each of the following

is or is not a partition of A.

68



- 63 -

(a) ( (1,2}, (5,6,3) }

() (1,2, (3}, (4,5), (6,2) )
(e) ( (1,3,5}), (2,4,6) }

(@) € (1}, (2}, (3}, (4}, (5}, (6} )
(e) ( (1}, (6,4}, (3,5,2) }

(£) ( (1,2,3,4}, (4,5,6) }

(g) ( {1,2,3,4,5,6} }

(h) ( (1,2}, (3,4 )

2. Find all the partitions of (1,2]}.

3. Explein why "<" defined on W does not partition W.

4, Let R be an equivalence relation on A. If we assume that
cRa and cRb, why can we conclude that aRb?

5. Find all the partitions of (1,2,3,4].

6. Let S be the set of all lattice points in the plane and
let R, and Ry be relations on S defined as follows:
Ry : "has the same first coordinate as" |
Re: '"has the seme second coordinate as"
(a) Show that both R, and R, are equivalence relations on S.
(b) Describe the equivalence classes into which S is

partitioned by each of the relations R, end R,.

7. Consider the following relaetions defined on the set P of
people in the United States:
R,: "lives in the same state as"
Rp: "lives within 1 mile of"
Ra: "is the father of"
Ry: "is a member of the same politicsel party as"

Rg: "has the same I.Q. as"
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(a) Determine which of the above sre equivalence relations
on P.

(p) Describe the equivalence clesses in the partititions
effected by the reletions in (&) which are equivaslence
relations on P,

Research Problem: Let R be an equivalence relation on A.

For every a € A, let

B, = (x: xRe]
Prove thet these sets Ba are the equivelence classes in

the pertition of A effected by R.
A pertisl ordering of a set A is & relation on A which is

(1) reflexive, i.e., for every a € A, gRa

(2) enti-symmetric, i.e, for all a, L € R, 8RDb
and bRs ;mplies a=D>b,

(See Exercise 14 in Section 8.14.)

{3) transitive, i.e., for all &, b, ¢ € R, aRb and bRe
implies aRc.

(2a) Let S be the collection of ali subsets of (1,2}.
Show that the relation "<" defined on S is &
pertial ordering of S.

(b) Drew the arrow disgrsm for this relation. Try to
describe a genersl property which the arrow disgram
for any partiq; ordering relation must have.

(a) Use en arrow disgram to illustrate the relation "divides"
on the se. E = (1,2,3,4,5,6}. 1Is this reletion a
pertisl ordering on E?

(b) Explain why the reletion "<" is or is not & partisl

0

ordering of the set W.
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8.15 Summary 2

In this chapter you have encountered some of the most basie
terms used in the study of mathematlics. Terms such as set, rela-
tion; equivalence class, partition, etc. will become part of your
basic vocabulary.

With respect to sets you should be able to give a clear and

complete description of the following terms:
set equality, subset, proper subset, universal set, union,
intersection, empty set, complement, disjoint sets, Cart-
esian product set.
With respect to relatiens you should understand what 1is
meant by the following terms:
relation, reflexivity, symmetry, transitivity, equivalence
relation, partition.
Also you should be aware of the tools we have used in our study.
These tools include:
set ncotation, Venn diagrams, arrow diagrams.
At this time you should review for yourself the meanings of

the above terms. Restudy any terms whose meanings are not clear

to you,

8.16 Review Exercises

1, Let S be a universal set where S8 = {-3,-2,-1,0,1,2,3}.
Let A = {-3,-2,-1,0}, B = (1,2,3}, ¢ = {-3,-1,1,3}, D = {0}.
(a) Determine the following sets:
(1) AuB (5)BUC (9)DUD
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(2) ANnB (6) BN C (0) BNB
(3) auc (7) AuD (11) snND
(4y- Anc (8 aAnD (12) suUD
kb) Find the complement of each of the following sets:
(1) A (3) ¢ (5) AuD
(2) B () Anc (6) Au B
(¢) Which of the sets A, B, C, D are
(1) subsets of the other?
(2) proper subsets of the other?
(3) peirwise disjoint?
2. Write three statements thst are true of each set A.
3. Let B = {x: x € W and x 1s even and x < 3}.
(a) Rewrite set B by listing its elements.
(b) List all the subsets of B.
(¢) List 81l the proper non-empty subsets of B.
(d) Determine B x B.
(e) 1s {(0,0), (0,1)} & relation on B?
(f) 1s {(0,0), (0,2)} a relation on B?
(z) Draw an arrow diasgrem for B x B.
L, Let V = {0,1,2,3). Let R be & relation on V defined as
follows:
R = {(0,0), (0,1), (1,0), (1,2), (2,1), (2,2), (0,2), (3,3)}
(e) Drew the arrow diegram for R on V.
(b) Is R an equivalence relation on V?
(c) What would occur if we defined a new relation S on
V where

s =RUYU ((1,1), (2,0)}7?

)
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5. (a) Prove or disprove that (AN B)U (AN B) = A
(b) (ANBYu (ANB)u (ANB) =79

6. Give an exsmple of a relestion R on a set A which is,
(a) reflexive and transitive, but not symmetric.
(b) reflexive, symmetric, and transitive
(¢) neither reflexive, nor symmetric, nor transitive.
(d) +transitive but neither reflexive nor symmetric.
(e) symmetric and transitive but not reflexive.

Determine which of the following ere true:

=
*®

(#) IfAc B, then K c E,
(b) If Ac B, then B < &,
8. LetD = {2,4,6,8,10,12}.
Explain why the following are or are nct partitions of D:
(a) { (2,4}, (6,10}, {4,212}, (8) )
(b) { {2,4,6}, (8,10}, (12} }
(¢) ( (2), (6,12}, (4,10} )
9. LetBOC=BNT. Prove or disprove that
AN (B°c)=(aNnB)o (AN C).
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CHAPTER 9
TRANSFORMATIONS OF THE PLANE

9.1 Knowing How and Doing

Have you ever read a book on how to roller skate or ride a
bicycle? Do you think you could have done well on roller skates
or on a bicycle the very first time you tried merely because you
have read the book? Knowing how i1s not quite the same as being

able,

In tiiis chapter you will be given a chance to do many things
as well as to learn about them, In order to do these things you
will need some equipment in addition to pencil and paper. At the
beginning of each section you will be told what equipment you
will need. Obtain this equipment before goling further so that

you can read and follow without interruptions.

9.2 Reflections in a Line

Materials needed: Paper without lines, tracing paper, ink, -

pen, two small rectangular mirrofs, and
a compass.,
Activity 1: Fold one unlined sheet of paper down the middle.
Open up this folded sheet and put cne drop of ink in the crease

and one drop of ink about an inch away from the crease.

=:ink drop

Q Figure 9.1
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Close the paper carefully to spread the ink about, keeping the
ink within the folided paper.

Now open up the paper. Look at the ink spots on both paper
halves. How do the ink spots compare in size and shape?

Now fold one halr back and replace it by a mirror in an up-
right position so that the edge of the mirror fits into the
crease. How do the images you see in the mirror compare with the
ink spots you folded back?

Put 2 more ink drops on one half cf your paper and repeat
the steps c¢f the preceding paragraph. Compare the distance be-
tween any 2 ink spots on one paper half with the distance for the
corresponding 2 ink spots on the other. Are they the same? What
generalization seems to hold for the two paper halves? The ink
spot figure on one paper half is called the reflection in the
crease of the other ink spot figure.

After the ink dries, place a plece of tracing paper care-
fully over the ink figured sheet. Then trace one of the ink spot
figures. What must you do to the tracing paper to get a picture
of the reflection of the figure you traced? Test your solution
with another ink spot figure.

In previous chapters we have learned that a mapping makes
assignments. For example, the successor mapping, S, assigns to

each integer the next larger integer.

n-——§——>n + 1

A reflection in a line is also a mepping since it assigns points
to points on a plane. Restricting ourselves to a fixed plane, a

reflection with respect to a fixed line aésigns to each point its
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mirror image or reflection in the given line. The next activity
suggests 1important properties of reflection mappings.

Activity 2: Fold an unlined sheet of paper down the middle,
Open up the folded sheet and place a heavy dot off the crease
line; label the dot "A."

e A

)

N_crease m

D
- s > wn W o

-

Figure 9.2

Where do you think the reflection of A iIn m will be?

Now close the paper agaln folding from left to right with
the paper positioned as in Figure 9.2, Dot A 1s now 1inside, but
you should be able to see 1t through the paper. Use a pen cr
pencll to go over the dot heavily. Opening uvp the paper, you
should now be able to see a mark for the true image of A, Label
the reflection of A in m, A', How accurate was your guess about
the location of A'?

Place another dot, B, and guess where 1lts reflection inm
ought to be. Now find the image of B under the reflection in m
Just as you féund A' ., Call the image of B, B'.

Draw & line segment between A and B, A' and B'. Using an
opening of your compass, check to see whether the length of seg-

ment AB is the same as the length of segment A'B'. (Henceforth,

we will use the symbol "AB" to mean "the length of segment AB.")

"o
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Figure 9.3

Place another point on the same hélf, call it "cC," and try
to guess where its reflection inm, C', is. Check by folding on
m. Compare the length of AC with N O and of BC with B G . Do
your measurements support the generalization for Activity i°?

Join A to A' and mark the point where the line drawn crosses
m, "A," (read: "A one"). How do the lengths of AR} and ATA;
compare? Join B to B', C to ¢' crossing m in B, and C,, respec-
tively. How do BB, and B'B, compare in length? CC, and O'C;?
What generalization might you make from these observations?

The mapping with respect to a fixed line, m, that takes
every point into its mirror image (such as A into A'), is called
a reflection in m. You noticed above that the length of AB was
the same as the length of ATH , the length of AT was the same as
the length of ATC', and the length of BT was the same as the
length of B'C'. The mapping which assigned A to A', B to B', and
C to ' was such that the distance between any two points of its
domain was the same as the distance between the images of these

“Qjﬂts in the range. A mapping like this, which preserves dis-
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tances, 1s called an isometry ("1so" means equal, "metry" means

measure). Do you think that every reflection is an isometry? Is

8
i
b

E
g
{.
¥
H

L

every lsometry a reflection?

Flgure 9.4, which illustrates the directions gilven above for
the reflection mapping, 1s sald to be symmetric with respect to

; line m. m is called a line of symmetry of the figure.

R = i AT < e

VAP e ST o A e A e

Figure 9.4

What is a line of symmetry for the following kite figure?

A

8
o

Figure 9.5

8
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How many lines of'symmetry does a rectangle have? A square?
A circle? (A line of symmetry need not itself be a part of the
given figure.)

Returning to the original sheet, illustrated by Figure 9.4,
join A, to B and B'. Compare A;B with A,B'. Join A, to C and
C'. Compare A,C and A;C' . Join any other point, P, on the crease
m to A and A', C and C'. What seems to be true about the dis-
tances of any point cnm to a point and its refiection?

Your observations should lead you to believe that a line re=-
flection is an isometry, and that a figure together with its re-
flection 1s symmet»riec with‘respect to the line of reflection.
Activity 3: Fold an unlined sheet. Open up the sheet and put a

dot on one side of the crease; label it "A."

crease (c) /

Figure 9.6

Simply by folding this paper, try to locate the reflection of A

in m. Some hints are:

(1) Fold back along the crease, and then fold back at A as

shown in this figure.

];BJ};‘ Figure 9.7
9

scasdsd
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Can you finish now?

(2) Fold back once again at A,

A

aond apern up
to show oll

the creoses.
oB

Figure 9.8

Where is A'? Find B' the same way.
Activity 4: We shall now see how to obtain the reflection of a
point in a line without folding. PFirst try to figure out a way
yourself. There are many ways of doing it. You will probably
need your compass.

One method of finding the reflection of a point A in m is to
think of the kite figure. PFind 2 points in m, call them P and Q,
and think of PAQ as half a kite figure.

(8

m

Figure 9.9

, Our previous observations lead us to believe that A', the image of

A, is just as far from P as A is from P, and that A' is Jjust as far
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from Q as A is from Q, If we draw a circle with P as center and

radius ¢f length PA, then A' must be somepface onn this circle.

/
A' is someplace
on this circle P
A

Figure 9.10

A' must also be on a circle with center Q and radius QA.

A' 1s someplace
on both of these
circles, What
point is A'?

Figure 9.11 81
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Join A' to P and Q to complete the kite figure
Using this method of obtaining reflections, find the re-
flections of points A, B, C if A, B, C are on the same line with ?

B between A and C.

Figure 9,12

Are the image points A', B', C' also on a 1line? Is B between A’
and C' ?2 What generalizations are suggested by your observations?
Suppose D is taken as the midpoint of KE, what 1s your guess
about D' ? Check your guess with a compass.

Your observations should have suggested to you that a re-

flection maps collinear points into collinear points preserving

betweenness. That 1s, if P, Q, R are polnts on the same line, £, :
then thelr images P', @ , R' are on the same line #', If Q 1is %
between P and R, then Q@ 1s between P' and R'. In fact, the mid-
point of a segment is mapped into the midpoint of the image of

this segment.

9.3 Exercises

1. Which points in a plane are thelr own 1images under a line
reflaction?

2. If you hold a pencil in your right hand, whiclk hand does it

ERIC 82




- 77 -

look like in the mirror?
3. If you spin a top clockwlse, what does it seem to be doing

in the mirror?

4, If points A', B', C' are the images of points A, B, C under
a reflection in m, what are the images of A', B', C' under

this reflection?

Al A

‘ i
8 8 i
' b

i

. %

3

[ [

5. Copy the diagrams and draw the reflection in m of the line

segment AB in each case.

(a) (b) (e) \

6. Copy the diagrams and draw the reflection in m of ray Kzrin
each case, (Ray Kfris the halfline starting at A and pass-
ing through B.)

(a) (b) ()
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-
Copy the diagrams and draw the reflection in m of line AB.

S
y pd

Copy the diagrams and find all lines through A that are
identical with their reflections in m:

(“) oA (b) 1 A

Do Exercise 8 by creasing a paper on which m and A are shown,
if you did not use this method in Exercise 8.

Fold a sheet of paper down the middle and draw some picture
as shown here. Cut along the line you drew and open up.

What do you notlce?

Which printed capital letters frequently have a line of sym-
metry? Will the reflection of these letters in any line be
the same letters?

Try writing your name so that it reads right in a mirror.
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Place a sheet of carbon paper under a sheet of paper so that
the carbon faces the back side of your paper. Write your
name. Look at the back side of your paper in a mirror.

What do you see?

For this exercise you will need a pad, 2 pins, and a mirror

about %" wide and at least 6" long.
Pad -
(uprfgg:'r;:n pad) Z 7

Pin (P)

Secure the mirror in an upright position on the pad. (Brace

it with a book, or fasten it with pins, scotch tape, or ad- %
hesive tape.) Stick a pin upright into the pad about 2" in |
front of the mirror. Place your eye close to the pad so

that you can see the image of the lower part of the pin, P,

in the mirror. Try to place the other pin, P', so that it f
will always line up with P and the image of P you see in the
mirror no matter how you change your line of vision. Where
is P' in relation to P? Your pin, P', should be located at
the reflection of P in the mirror. P' 1s now the image of P
under a reflection in the mirror. This close analogy be-
tween a reflection mapping and reflections in a real mirror
1s the reason for using the words "reflection" and "image."
By folding your paper, find the line m, for a reflection
that will map
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(a) P onto P', (b) AB onto itself,
oP 2
i A/
(¢c) SR onto ST, (d) Line AB onto line CD,

(There are 2 lines m

v >

[}
5

(e) In each of the above exercises what can you say about

the crease?

9.4 Lines, Rays and Segments

Although we picture a line as a taut string, as the edge of
a molding, as a mark on the blackboard or paper, we must recog-
nize that these things are quite inaccurate as representations of

a line, TFor example, a string may sag or have a "belly." A

string has thickness. A string does not go on and nn in both di-

rections endlessly. However, a line has no "belly," no thickness,

and does go on endlessly in both directions. But how can we do

any better? A line is an idea (1like a number), while a physical

representation i1s a thing (1like a numeral) used to denote the

The marks we call "lines," only represent lines yet we con-
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tinue to refer to the marks as "lines" because we are not really

concerned about the marks but about the i1deas the marks represent.

B AN TR A T

If "A" and "B" name two points of a line then TAB" names the

line containing A and B, We assume that there 1s only one line

RIS Gt b

(our lines are always straight) that contains two different

points. AB and BA are the same lilne,

A B
< - — =

Figure 9.13

We often place arrow heads at the ends of our marks to remind us

- that the lines are endless in both directions. Sometimes, we

place a letter near the mark and refer to the line by the letter.

Consider a line m and a point P in this line:

2
%
7
e

- > > m
P

Figure 9,14

The set of points in line m to the right of P, together with P,
is a ray. The set of points in m to the left of P together wlth
P is also a ray. Point P 1s called the endpoint of both rays.
Any point, P, 1n a line together with all the points of the line
that are on the same side of P, constitute a ray.

We often name a ray by two capltal letters. The left letcter
names the endpoint of the ray and the right letter names any

other point of the ray. An arrow pointing to the right is placed

over both letters.

.
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2

Figure 9.15

L o
If P and Q are two points on line m, PQ andﬂﬁﬁ'are different rays.
They overlap on a set of points containing P, Q and all the points

between P and Q.

4 P Q >

i ——— S —

overlap of PQ and QF

Figure 9,16

—— — ——
The overlap of PQ and QP is the segment PQ (or QP).

9.5 Exercises

1, Let A, B, C be any 3 points that are not on the same line
(non-collinear points). Draw all the lines you can, each
containing two of these points,

(a) How many lines did you &et?

(b) Name the lines.

(¢c) Name each of these lines another way using the same
letters.

Q > Let A, B, C, D be any 4 points, no three of which are col-
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linear. Draw all the lines you can each containing two

points.
(a) How many did you get?
(b) Do the same thing for 5 points, no 3 of which are col-
linear.
(c) Copy the table below, fill in the blanks, and try to
discover a pattern that you feel should continue,
Number of Points 2 3 4 5 6
Number of Lines
(d) Try to give an argument to support your generalization.
A . < D
(a) Name the line shown 1ln as many ways as you can using
the names of the given points., There are 12 possible
ways.
(b) Name all the different rays you can find in the figure.
Note Kﬁ, ITC: ﬁare all the same ray.
(c) How many different rays did you find?
(d) copy the table and fill in the blanks,
Number of Points on o Line 1 2 3 4 5
Number of Rays
(e) Try to discover a pattern that you feel ought to continue.
(f) Try to give an argument to support your generalization.
(g) Name all the segments formed by points A, B, C, T.
(nh) How many different segments did you get?
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(i) Copy the table and fill in the blanks.

Number of Points on a Line 2 3 4 5 é

Number of Segments ’

(J) Try to discover a pattern that you feel ought to con-
tinue.

(k) Try to give an argument to support your generalization,

9.6 Perpendicular Lines

In one of the exercises you were asked to find a line, n,
through A that is its own reflection in m. Your line should look
like the one in Figure 9.17. Whenever we have two lines such

that either is its own reflection in the other, we say that

Figure 9.17

these lines are perpendicular to each other. We use the symbol

"l" for "perpendicular" or "is perpendicular to." For Figure
9.17, we have m|n and n|m,

If B and B' are two points, each the reflection of the other
in line m, then BR Jm, and m[BB' .

Figure 9,18 S}(b
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We often indicate in a drawing that 2 lines are perpendiec-

ular by a little square where the lines cross.

}

KLLKM
K
m l/\'d

Figure 9.13

Line segments which are in perpendicular lines are said to
be perpendicular. Rays which are in perpendicular lines are said
to be perpendicular. In fact, any pair such as ray and segment
or line and ray are perpendicular if they are in perpendicular

lines. We continue to use "l|" for any such perpendicularity.

9.7 Rays Having the Same Endpoint

In this section we shall be dealing with rays that have a
common endpoint.

—— —— .
PA ard PB are rays with the same endpcint, P.

A

—

Figure 9.20

-

If two rays with the same endpoint constitute a line, they

are called opposite rays. The rays ﬁa'and ﬁB’are opposite rays.

Figure 9.21
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"An interesting property of a pair of rays with common end-
point 1s the measure of the angle these rays determine. In Figure
9.20 rays ﬁxiand Fg'determine a relatively small angle. In Figure
9.22 rays 63-and Eﬁrdetermine a much larger angle.

Q
Figure 9.22

If we were given two such pairs of rays with a common end-
point, how could we compare the measures of the angles they de-
termine? To see when such information would be useful, consider
the following situation.

Mom makes dellcious ples of uniform thickness. She is very
skillful at cutting sections from the center. When you get home

one day you see these two pieces in a pan.

Pan—

Figure 9.23

Which one would you select if you want the larger piece? You may
want to use your compass to help you decide. FHow might you use
it? Think about this question a moment before reading on.

If you thought of comparing the distance from S to T with the
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distacce from 8' to T, then you have anticipated the text.
These measurements were intended to be identical, although the
left piece may look larger,

Using this example as a clue, how could you decide which of

the following pair of rays determines the greatest angle?

//\
A
Figure 2.24

Is it the pair of rays at A? at B? at C? Which pair of rays
determines the smallest angle?

One way of telling is to draw an arc of a circle across each
ray, using in turn points A, B, and C as centers. Each arc should
have the same radius (or opening of your compass). After the arcs
are drawn, compare the distance between intersection points Jjust
as you did for the pie. You will find that A;A; > B,B;, and

ArAs < GGy,

A B{ 3
/ c 15 ”
/
A ¢
S
YQ- - -

Figure 9.25
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This shows that the measure of LC is greatest, the measure of LB

smallest, and the measure of LA intermediate,
In Chapter 10 you will measure angles using a protractor, an
instrument designed specifically for measuring angles.

Activity 5:¢ On a sheet of unlined paper, draw line m and a pair

of rays PA and PB as shown:

Figure 9.26

Find the reflections P'A' and P'B' of the rays BR and PB in

m, Guess how the angles formed at P and at P' combare in meas-

ure. Check your guess with a compass. Then repeat the experiment

with rays meeting in a different angle. What generalization seems
to hold?
Activity 6:

the non-collinear points A, B, C.

On a sheet of unlined paper draw line m and Jjoin

The figure formed is called

"triangle ABC." Find the reflection of triangle ABC in m,

Figure 9.27
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Compare the angles at A, B, and C with those at A', B', and C'.
Then compare the lengths of AB, AC, and BC with the lengths of
AP, AC, and F C'.

Cut out trlangle ABC. See 1if you can qake it fit on A'B' C' .
Did you have to turn ABC over before making it fit? Will 1t
always be necessary to turn over? If not, when will it be
unnecessary? Try this experiment again with a different triangle.
Try special kinds of triangles.
Activity 7: Now we are going to make a reflection and then a
reflection of the image of this reflection, but in a different
line. Draw the followlng on your unlined paper: triangle ABC
and parallel lines m and n.

A

Figure 9.28
Find the reflection of triangle ABC in m, Call 1t triangle
A'B'C'. Now find the reflection of triangle A'B'C' in n., Call
this new figure triangle A"B"C"., Try to make some generalizations
about the triangles ABC, A'B' C', and A"B"C". Cut out the three
figureé. Do they fit? Should they fit? Why do you think so?

Which triangles can be made to fit without turning over?

30
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9.8 Exercises

1,

(a)

(e)
(a)

Copy the diasgram shown and find the line containing
point A that is perpendicular to line m. You may try
folding your paper,

Suppose now that A is on m. Copy the diagram below
and find the line containing point A that is perpen-
dicular to m. You may want to try folding your paper.

Try to do (a) and (b) without folding.

What can you say about & triangle that has exactly one
line of symmetry?

Can you find a triangle that has Just two lines of
symmetry?

Can you find a triangle that has Just three lines of
symmetry?

Are there triangles that have more than three lines of

syrmmetry?
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Ly

: (a) Find the reflection of triangle T in m, call it "T ",

3. Copy these figures,

and the reflection of T in n, call it "Tmn"’ and

finally, the reflection of Tﬁn in m, "Tmnm"' Compare

T, Th’ Tmn’ Tmnm'

E (b) Carry out the same steps with m and n perpendicular
lines. What can you say now that seems to be true?
3 4, what is wrong in each of these cases?

(a) The distance from A to B is less than the distance

, c/ .

8 c

: from C to D. Hence, the angle at P 1s smalier than
? the angle at Q.
(b) If two triangle cutouts fit then three pairs of angles
(one from each triangle) must have the same measure,
Hence, if the measures of pairs of angles for two
triangles are the same, their cutouts should fit.
5. Why are comparisons difficult for the angles formed by rays

that are close to belng opposite rays?

\__.\__.
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6. (a) If the distance from A to B is twice the distance from
C to D, would you say that the measure of the angle at

P 1s twlce the measure of the angle at Q?

A\

(b) Compare the measure of an angle determined by two
opposite rays and the measure of an angle determined
by a pair of perpendicular rays. Is the first measure

twice as large as the second?

9.9 Reflection in a Point

Does the parallelogram below have a line of symmetry?

[/

Figure 9.29

In other words, 1s there a line for which the parallelogram

and its mirror image in this line are the same set of points?
After some experimentation, including folding, you will

probably say that this parallelogram has no line of symmetry;

there is no line reflection that leaves the parallelogram un-

changed. However, as we shall soon see, the parallelogram does

have a kind of symmetry; it is always symmetric in a point. Try

to guess what symmetric in a point means.
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Materials needed: Pencil, unlined paper, tracing paper,

compass.
Activity 8: Let A, B, and C be points on line 4. Let P be
any Sther point (not necessarily on 4). Draw ray'ﬁ?'and locate
point A' on ray AP so that P is the midpoint of ARA'.

~ A
~
B
~
~ P
~.
C\
~

Figure 9.30
We call A' the image of A under the reflection in P. In the same
way, find the image of B and C under the reflection in P, calling
the images B' and C' respectively. Your figure shov'd resemble
Figure 9.31.

~

Figure 9.31

Are the points A', B', C' also collinear? Is C' between
A' and B ? How does the distance from A to B compare with the
distance from A' to B' ? Compare the length AC with A'C' and
BC with B'C'. What conjectures would you make from this activity

regarding: collinearity of points, betweeness, 1sometry? Try

39
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to find a single line in which a reflection maps A into A' and
B into B'.

The above activity should have suggested to you the follow-
ing:

1. Just as a reflection in a line is a mapping of all the

points of the plane onto all the points of the plane,

reflection in a point is also & mepping of all the points

3 g A T T o ST T P A R R AT a2

of the plane onto all the points of the plane.

2. Both mappings, reflection in a line and reflection in a
point:

! (a) are one-to-one,

- (b) are isometries,

(c) map collinear points onto.collinear points,

; (d) preserve betweeness.

What other properties would you conjecture? Perhaps

the next activity will suggest some others.

Activity 9: Find the image of triangle ABC (usually written as
‘“ "AABC") under the reflectioninP, Call it AA'B' C' where A—>A',

BB , C—>C'.

Figure 9,32

Compare the angies at A, B, C with the corresponding angles at
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A', B, C'. How do the lengths AB, BC, and AC compare with A'B',
B'C' and A'C' ? What additional conjectures would you now make
that have not been mentioned regarding the image of a line, ray,
and segment under reflection in a pcint? What conjecture would you
make regarding the angle determined by two rays and the angle of
their images under reflection in a point?
Have you thought of these:
3. Reflection in a point, Just as reflection in a line:
(a) maps segments onto segments,
(b) maps rays onto rays,
(¢) maps lines onto lines,
(d) preserves the measure of the angle formed by two
rays.
Cut out AABC and AA'B' C'. Try to notice exactly what you
have to do to make one triangle fit on the other. Do you have
to turn one over before they will fit? Recall that for reflec-
tion in a line it was often necessary to turn over the flgure
or 1ts image to obtaln a fit,

Materials needed: Pencil, lined paper, unlined paper,

compass.

Activity 10: The lines of your lined paper are parallel lines.
If two lines are in the same plane and do not cross, the lines
are parallel, What happens to parallel lines under a reflection

in a 1line and reflection in &a point?
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oP

Figure 9.33
Draw two parallel lines and point P as in Figure 9.33.
Find the image of AB under a reflection in P; call it A B . Does
it seem that BB and M B are parallel? If they are parallel
(1et us abbreviate our writing by using the symbol "||" for
"is parallel to") we have BB || A B . Find the image of
“CB under a reflection in P, calling the image © D'. Is €D || C D2
What conjectures would you be willing to make now?
Next draw three lines: AB || CD and m as shown in Figure

903”‘.

Figure 9,34
Find the reflections of the parallel lines‘(?b'and‘er’in m.
Are the reflections parallel? Is %_D»parallel to its reflection
in m? Have you made any of these conjectures?
1., A line maps onto a parallel line under reflection in a
point.
2. Two parallel lines map onto two parallel lines under

reflection in a point and reflection in a line.
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3. The image of a figure under a reflection in a point

1s a rotation of the figure through a "half turn".

‘*t:::::;7* Pe ﬂZC::::;C

Pigure 9.35

9.10 Exercises

What point is its own image under a reflection in point P?
Is there a point P in which a reflection will map each of

the following figures onto themselves? (If there is, shoW
1ts location.)

(a) a line segment

(v) a ray

(¢) a line

(d) a pair of parallel lines

(e)

)

parallelogram

(f) the letter Z

If there is a point in which a reflection will map a
figure onto itself,.we say the figure is symmetric in a
point. If there is a line in which a reflection will map
a figure onto itself we say the figure is symmetric in 2

line. For each printed capital letter in the English
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L, Is there a line, m, in which a reflection will map each of

i )
% alphabet, decide whether it is symmetric in a psint or in a
% line or neither,
Symmetric Symmetric

Letter in a Point in a Line Neither
% A No Yes -
¢ .
1

the following figures onto itself? (If there is, show it.)

(a) & line segment
(b) a ray
(e) a line
(d) a parallelogram
5. Using unlined paper and your compass and ruler obtain a line

parallel to m, Hint: Find the image of m under the reflectio
in P,

oP
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Try to find a way of obtaining a line through P parallel
tom (See Exercise 5):

(2) by folding your paper

(b) without folding but using your compass and ruler.
What kind of symmetry does each of the following have?
(2) a picture of a face (1) front view (2) side view
(b) a circle

c) a square

d) a rectangle

e) a picture of a top

(
(
(
(f) a picture of a five pointed star
(g) a picture of a six pointed star

(n) a swastika

(1) a crescent

Denote by "SP" the reflection mapping in point P, and by
"sm" the reflection mapping in line m. Find the image of

AB under each of the following composite mappings:

(a) #m following Sp (¢) #m following 2m
(v) Sp following ¢m : (d) Sp following Sp
/ v
A
(e) Sp following S, ) (£) 8q following S;
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(g) Which of the above mappings (a-f) gave an image of AB
that was parallel to AB? (We say that line segments
are parallel if they are in parallel lines.)

9. If AB and TD have the same length, find one or more point
refelctions that will map AB onto CD.

(You may have to compose
two point reflections.)

YV
AN

10. Let r || s. Find the image of AB under each of the

i following composition mappings:
|

(a) -?..° ‘?5 (b) ‘QS ° ‘Qv'

A

\

(c) Are the images found in (a) and (D)
(1) the same?
(2) parallel?

(3) parallel to EB?
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*¥11. Consider the following designy call it T.

Y

Describe how to obtain each of the following designs,

using T or its images under mappings,

NN NN
ST

12. (a) List at least 5 wa,s in which a reflection in a

line and a reflection in & point are alike.

(b) List at least 2 ways in which they are not alike.

9.11 Translations

In Chapter 3 one of the basic mappings from W to W was the

ERIC 1077
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translationy; that 1s, the mapping with a rule of the form

N ———————p-n1 + Aa.
In Chapter 4 these translations were extended to mappings of
Z to Z., Then in Chapter 7 a two-dimensional translation was
defined from Z x Z to Z x Z.

Ta,b ’

(x,y) »(x + a, y+ b)

Although T has been defined only for lattice points in the

a,b
plane, it can be extended naturally to the whole plane.

Activity 11: On a sheet of lined paper select points A, B, C

as in Figure 9.36.
A

} 2

B

Figure 9.36

Now locate points A', B', C' 3 inches to the right of A, B, C

respectively. Compare the distances AB with A'B', AC with A'C*,
BC with B' C'. What can you say about AA', BB', CC'? If C were

the midpoint of AB what would you conjecture about C'?

Now choose A, B, C as non-collinear points on different
lines of the paper as in Figure 9.37. Find the image of AABC
under the translation "three inches to the right." Call it

A

AA'B'C!'.,

C

Figure 9.37 1@3
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Compare the angle at A with tnat at A', the angle at B with
that at B', the angle at C with that at ¢'. What generaliza-
tions would you be willing to make for translations regarding:
isometry, collinearity, betweeness, midpoints, parallelism,
angles? Carry out some other activity to check some of your
conjectures.

You may have thought of the following generalizations:

A translation

(1) 1is an isometry;

(2) maps line segments onto parallel line segmentss

(3) preserves coliinearity, betweeness and midpoints;

(4) preserves parallelism and angle measure.

A translation need not have a magnitude of Just three
units and a direction only to the right. A translation may have
a magnitude of any number of units and any fixed direction.
There are infinitely many directions possible for a translation.
Because we have the lines of our lined paper so handy, we shall
be translating often to the right or left. However, one could
always turn the paper so that a translation is along the parallel
lines of our paper.
Activity 12: 1In the lower left hand portion of a piece of

tracing paper copy the arrangement of points given in Figure

E
9.38.

A B C
Figure 9.38
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Next, using the parallel lines of a sheet of lined paper as a
guide, find the images of A, B, C, D, E under the translation
"four inches to the right." Then turn the 1inéa paper so that
the lines are vertical. Using these lines as a guide, find
the images of A', B', C', D', E' under the translation "two
inches up." Compare the lengths of AB and A"B", BD and B"D",
AE and A"E", CD and C"D". Compare the lengths of A B and
AB", TD' and CT'D", and B'E' and B"E".

Next, draw AA", BB", CC", DD", and EE". What happens
when horizontal and vertical translations are composed? Try
to compose two other translations which are not in perpendicu-
lar directions,

Your experience In Activities 10 and 11 should have dem-
onstrated the fact that a translation mapping can be defined
for the whole plane by simply giving a magnitude and a direc-
tion. The identity mapping, that is the transformation that
means each point onto itself, is also considered a translation

--one with magnitude zero.

9.12 Exercises

1. Which points, if any, are thelir own images under a
translation?

2, Which of the following sets remain the same under some
translation? Describe the translation(s).

(a) a segment

110
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() a ray
(e) a line
(d) a plane
(e) a half plane
3. Many designs are made by a succession of translations.
You can make a face design by doing the following:
(a) Draw a face on a blank sheet, about the size

shown here, near the left edge of your paper.

(p) Place a piece of carbon paper face down on
" another blank sheet,

(¢) Mark off 2" intervals along the upper and lower
edges of the paper under the carbon, |

(d) Line up the paper containing the face figure with
the other paper.

(e) Trace over the face figure with pencil.

(£) Move face sheet 2 inches to the right using the
marks you made as a guide and trace over face agailn.

(g) Move face sheet 2 inches again to the right and trace
face again,

(n) You should be able to get 4 or 5 faces on your paper

this way.

111
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(1) Try to describe the 4 or 5 faces in terms of trans-
lations.
4, what happens when you use the same
(2) 1ine reflection over and over on a figure and 1its
image?
(b) point reflection over and over on a figure and its

image?

9.13 Rotations

We have already observed that a point reflection applied

to a figure corresponds to giving the figure a half turn.

| | ’ ’

Figure 9,39

If we start with the figure to the left of P and apply the point re-

flection sP we obtain the figure to the right of P, If we start

with the figure to the right of P and apply S, we obtain the fig-

P
ure on the left of P, The entire figure above (the original F

and 1ts 1image under S 1s symmetric in P. But how would you re-

p)
gard the followlng figure?

112
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Figure 9.40
Is it symmetric in a 1line? 1in a point? It seems to have some
kind of symmetry! If we rotate the figure % of a complete rota-
tion, we obtain the very same figure. Also, starting with any
single F we can obtain the other two by rotating the figure
through a % turn twice. This suggests mappings which are
rotations about some fixed point. A rotation in a point maps
every point of the plane onto a point of the plane. What 1is
needed to specify a rotation mapping?

We shall say that a figure has a rotational symmetry if

there is a point and a rotation, which is less than a full rota-
tion but not a zero rotation, that maps the figure onto itself.
Both "F" figures above have rotational symmetry. Notice that
the identity transformation may be regarded as a zero rotation,

or as a full rotatilon.

9.14 Exercises

1. Which of the printed capital letters have rotational

symmetry?
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2. What properties are preserved under a general rotation
like a 4 turn? Which are not?

3. Let us denote by "P%" a rotation that maps every point
of the plane by a % turn counterclockwise about point P,
Which of the following figures are their own images un-
der P%?

(o) (©

rectangle
square

(b) (d)

0
____F____

P is center of a
P is center of  friangle with sides
a circle of same length

4, wnat kind of symmetry or symmetrles does each of the
following sets of points have?
(a) 1lattice points of the first quadrant
(b) 1lattice points of the first and second quadrants
? (c) 1lattice points of the first and third quadrants
(d) all the lattice points in a plane
5. The various transformations studied 1n this chapter can
be combined to give operational systems where the opera-
tion 1s composition of mappings. Fill in tables (a),
(b), (c), (d) showing composition of mappings. In (a),

(b), and (c), the sets (e, 4m}, {e, &m, #n, Spl, and

{e, Pi’ PQ’ P%} are studled. "e" stands for the identity
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mapping and the mappings in (a), (b), and (c) are

considered to be acting on the square figure shown here:

square —

(a) P .
e |4m
e

Im

(b) (c)
e fm ]4n |8
P e |23 Pi, %{

e e

rm in P%

Ln Pi.

Sp P% e

In (d), the mappings are considered to be acting on
this equilateral triangle. (All 3 of its sides have

the same length.)

r, s, t are fixed lines on the plane.

(d) ¢ & 0

P\/j




R AT e ot s e

O

10.

- 110 -

In 5(a)-(d), find the inverse for each of the mappings:
(a) 4m (b) Sp (e) Py (d) Py (e) Py

Which mappings preserve:

(a) distances (d) midpoints
(b) collinearity " (e) angle measure
(c) betweeness (f) parallelism

Which mappings do not, in general, preserve:

(a) distances (d) midpeints
(v) collinearity (e) angle measure
(c) betweeness (f) parallelism

Let us try to extend some of our mappings into 3 dimen-
sions. Describe and try to give examples of tThe corres-
ponding symmetry for each of the following:

(a) reflection in a plane

(b) reflection in a line (in space)

(¢) rotation about a line

(d) translation in space

What are needed to specify each of the following types
of mappings:

(a) a reflection in a line

(b) a reflection in a point

(e) a translation

(d) a rotation

9.15 Summary

1.

A reflection in a line is a one-to-one mapping of all the

116



o v

- 111 -~

points of a plane »nto all the pcints of the plane

preserving:
§ distance midpoint
E collinearity angle measure
? betweeness parallelism

A reflection in a line does not preserve direction., If
the reflection of A in m is A', then AA' is bisected by m.
r If m is the line in which a reflection is taken, then

each point c¢f m is its own image.

N

A reflection in a point is a one-to-one mapping of all

§ the points of a plane onto all the points of the plane

v preserving:

; distance angle measure
? collineurity parallelism

g betweeness midpoint

A reflection in a point maps a line onto a parallel

I

line; it is the same as a half-turn. If the image of

Py

A under a reflection in P is A', then P is the midpoint

§ of AA'. If P is the point in which a point reflection is
taken, then P is the only point that is its own image.

3. A translation is a one-to-one mapping of all the points

of a plane onto all the points of the plane preserving:

distance angle measure
collinearity parallelism
{ betweeness midpoint
§ No point is its own image under a translation which is
']jRjkj not the identity mapping.
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4, A rotation about a point is a one-to-one mapping of all

the points of a plane onto all the points of the plane

preserving:
distance angle measure
collinearity parallelism
betweeness midpoint

The point about which a rotation is taken is the only
point that 1s its own image, unless the rotation is a

multiple of a complete rotation.

9.16 Review Exercises

1. Fill in the table with "YES," if the mapping always has
the property, and "NO," if it does not.

pregmpping reflection | symmetry translation § rotation
CrvSs in a line in a point

distances
(isometry) .

collinearity
betweeness
midpoint

angle
measure

parallelism
2. What kind of mapping and symmetry are suggested by
each of the BHllowing:

(b)
(@)
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/ W

NANAMANANANAN
\\\\\\\\\

Which points are their own images under a

(a) reflection in a line?

(b) reflection in a point?

(¢) translatinn?

(d) rotation?

Which of the following figures may be identical with its

image under one of the four mappings mentioned 1ln Exercise

3? Explain.

(a) a line

(b) a ray

(¢) a line segment

(d) two rays which are not opposite yet share a com-
mon end point

(e) a square

(f) a rectangle

(g) a parallelogram

When are two lines perpendicular?

What holds for the two lines m and n if

4m o 4n = &N o 4im ? 119
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7. Find all points P which have the same image under both
composite mappings
fm o 4n = 4n o 4m,
8. What is the smallest numher of line reflections whose
compositions suffice to
(a) map any fixed point A onto a fixed point B?
(b) map any fixed ray onto any fixed ray?
(c) map any fixed line onto any fixed line?
) mep any flxed line segment onto any fixed line seg-
ment of the same length?
(e) map any AABC onto AA'B' C' if AB = A'B', AC = A'C', and
BC=RBC?
9. Copy the diagram, and find the reflection of AB in m.

/
—_— .. - A am

10. Copy the diagram, and find the image of AABC under the

re ~*ion in poinf P.’

11. Copy the diagram again in Exercise 10, and show the effect

of applying Py, Py, Py to AABC. 120



CHAPTER 10
SEGMENTS, ANGLES, AND ISOMETRIES

10.1 Introduction

In previous chapters you have been introduced to many
geometrical ideas which have been studied with the help of
coordinates and mappings, particuiarly isometries., 1Ir this
chapter, we shall tie together many of these results, make them
more precise, and extend: them to the study of angles.

Since isometries are distance preserving mappings, we shall
look more closely at segments and their measure. Then we shall
consider angles, how they are measured, and thelr behavior under
an isometry,.

We begin by considering some basic properties of lines
and planes that are important for our study of segments and

angles,

10.2 Lines, Rays, Segments

-

It may seem to you, on reading this section, that we are
making obvious statements and thus wasting time. If so, you
will be confusing the obvious with the trivial, 'Obvious state-
ments can have great significance. For instance, the statement:
"The United Stated has only one president" is quite obvious, but
its implications for the government and people of the United
States are extremely important.

Our first statement about lines is obvious. It is called
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the Line Separation Principle and it expresses in a precise way

the following idea: If we imagline one single point P removed
from a line £, the rest of the line "falls apart" into two dis-
tinct portions (subsets). Each of these portions is called an

open halfline. Along each halfline, one can move smoothly from

any point to any other point without ever encountering point P.
However, if one moves along line £ from a point in one halfline
to a polnt in the other halfline, then it 1s necessary to cross

through point P. See Figure 10.1.

Figure 10.1

The mathematical way of stating this principle more precise-

ly is as follows:
Any point P on a line £ separates the rest of 4 into two
disJoint sets having the following properties:
(1) If A and B are two distinect points in one of these
sets then all points between A and B are in this set.
(2) If A is in one set and C is in the other, then P is
between A and C.
One of these open halflines may be designated°FK, the other
P¢. The little circle at the beginning of the arrow indicates
that P 1tself 1s not a point of the open halfline, If P 1s
added to PK then we obtain the halfline, or ray, designated PR
(no circle at the beginning of the arrow).. You should be able
to name two open halflines of £ in Figure 10.1 with point A as
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the point of separation, and name two distinct rays starting at
A. The starting point of a ray is called its endpoint. Note
in Figure 10.1 that PR and TB contain precisely the same points,
thus PR = ?3; aiso PR =FB.

The set of points common to ?? and 7B is the segment PA.
Thus PR N AP = AP. The set of points found in either PR or PG
or both is the line 4. Thus PR U TC = £, PR and PG are called

opposite rays.

10.3 Exercises

Exercises 1-3 refer to the line £ below.

- ¢
A 8 c p E

1., Name two distinet rays «f £ having C as endpoint, Name the
open halflines of £ for point of separation C.
2., Using two points, if possible, name each of the following:
(a) ABUBC (e) AC N DB (1) BR n BE
(b) BuB (f) A n DB (J) BR nBE
(¢) ABu B (g) AN TH (x) B& n°BC
() BBuBE (n) AN BD (1) BEnEC
3. (=) Name a ray with endpoint B, containing E.
(b) Name an open halfline contained in BE. Are there
others?
(c) Describe the set of points CA N “AC.
(d) Name a ray containing‘ﬁﬁ. Are there others?
4, 1et £ be a line and P one of its points. Let h, and hy be

the two open halflines of £ determined by P. Let A and B
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be distinct points in h;, and C a point in ha. Determine

whether each of the following statements is true or false

hy hy

-— —

C P A 8

(a) A1l points of AB are in h .
(b) All points of H8 are in h;.
(c) Either AB or BA contains C.
(d) Both AB and BR contain C.
(e) TP@ contains A.

(r) TP contains A,

(g) All points of PB, other than P, are in h,,

-2 -1 0 1 2 3 o

Using the data shown in the above diagram tell what values

X may have if X 1s the number assigned to a point in each

E_ of the following sets:
(a) BB (e) BR (o) W8 (g) AP n T8
(b) B (a) M (r) AENPE (n) FPU TR

10.4 Pplanes and Halfplanes

A second separation principle concerns planes, and is
another example of an obvious statement. Tt states an essential
i property of planes.

It will help you to think about a plane if you imagine a
very large flat sheet of paper, so large that its edges are
inconceivably far and unreachable. In fact, it would be even

Qo better if you could think of a plane as having no edges, Just
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as a line has no endpoints. In such a plane we could think of

a line; otherwise a line, reaching any edge the paper might have,
would have to stop and thus acquire an endpoint, But then it
would not be a line!

We cannot draw a line, since any drawing would necessarily
have to begin and end. In the same vein we cannot draw a plane,
But we suggested a line by drawing a segment and arrows at each
end. We suggest a plane by drawing a piece of it, as shown in
figure 10.2. Unfortunately there is no easy way to suggest in

the drawing that the plane has no edges.

Figure 10.2
However, to remind you that we are talking about a plane, rather
than a piece of it, we shall use Greek letters to name the plane.
For instance @« and B (alpha and beta) will be the names of planes,
Our second separation principle concerns planes. This

Piane Separation Principle expresses in a precise manner, the

following idea:
Any line £ in a plane o separates the rest of the plane
into two distinct portions (subsets). Each of these portions

is called an open halfplane., Within each halfplane one can move

smoothly from any point to any other point without ever encoun-

tering line £. However, if one moves within plane « from a point

Ty
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Figure 10.3

in one open halfplane to a point in the other open halfplane,

then it is necessary to cross line 4., The mathematical way of

% stating this is as follows:
Any line # in a plane o separates the rest of o into two
disjoint sets having the following properties:
(1) If A and B are two distinet points in one of these
sets then all points of AB are in this set.
(2) 1If A is in one set and C is in the other then AC (the
segment, not iC) intersects 4 in a point.
The line £ is called the boundary of each open halfplane
determined by 4, but actually it does not belong to elther open

halfplane. The union of an open halfplane with its boundary is

called a halfplane.

g stz a e e e

! ' Figure 10.4
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In the plane named 8 in Figure 10.4 you see line m separa-
ting 8 into two halfplanes named H, and Hy. If A is in H;, call
H, the A-side of m. Then H, 1s the side opposite the A-side,

10.5 Exercises

Let a be a plane containing line £, and let £ contain point
A. Let the two open halfplanes determined by £ be H, and H,.
Determine whether each ¢f the following statements 1is true or
false: K
1. Any line concaining A, other than £, contailns points
of Hy and Ha,.
2. Any ray wich endpoint A, not lying in 4, contains
points of H, and Hj.
3. Any segment containing A as an interior point and not
lying in £, contains points of H, and H;.
4, 1If B and C are any two distinct points in H,, then BC
intersects 2.
5. If B and C are any two distinct point in H;, then §5
does not intersect 2%,
6. If B and C are two distinct points in H3, then'ﬁa may

not intersect £,
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1f D is in H and E is in Ha» then it 1s possible that
652 | 2.

Quadrant II Y axis Quadrant I

p 2

1

//x &Xis

— -2 -1 0

-1

-2
Quadrant 111 Quadrant IV

k4

The coordinate system shown separates the plane into four
sets, each called a guadrant. The x-axis separates the

rest of the plane into two open halfplanes, one containing
the point with coordinates (0,2) the other containing (0,-2).
Let us name the first of these open halfplanes H+x’ the
other H-x' gimilarly, the y-axis separates the plane into
two open halfplanes which we name H+y and H_y, with the ob-
yious meaning attached to each. Now Quadrant.T = Hiy N H g

In the same manner define Quadrants 11, III, Iv.

10.6 Measurements Of Segments

the

the

Let us examine what 1s invoived when we use & ruler to £ind
length of 2 segment. we first place the graduated edge of

ruler against a line segment say'ﬁﬁ, matching the zero

point of the ruler with one of the points, say A. (see Figure

10.5.)
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— w — =
.—n-J

N
|

o
O

Figure 10.5
We then assign to point B the number on the ruler which matches
it and say that the length of AB, denoted by AB, is the number
assigned to B. In our example the ruler assigns O to A and 3
to B. So AR = 3.
Now suppose we move the ruler to the left until it arrives

at the position shown in Figure 10.6.

|
b N> —p >
—
—n —$ =

i S
|

What 1s the number assigned by the ruler to A? to B? Using

Figure 10.6

these numbers how can you find AB? Probably you subtracted 2
from 5 since this calculation gives the number of unit spaces

in AB. But suppose we turned the ruler around to this position.

/l
—
—-

Figure 10.7

N
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What are the assignments made by the ruler to A and B in this
position? Would you subtract 5 from 2 to find AB? This, of
course gives ~3. In measuring the length of a segment we want
to know how many unit spaces it contains. Therefore, we use
only positive numpers for lengths of segments. If we do subtract
5 from 2, we must take the absolute value of the difference.

In general, then, if a ruler assigns the numbers X, and xa
to the endpoints of a segment Kﬁ, we can use the distance for-
mula.

i
AB |X1 - Xa|

Let us now consider a ruler which has negative numbers on
it (like a thermometer) that is placed against AB and looks like
this.

i Py
—
—— —4
b o ——f
—-N—Jm
T——A—_
g

Figure 10.8

or perhaps like this,

—

EEEEEEED

Figure 10.9

T
I N

Figure 10,10 13@

or even like this.

o )
L - —]
’—-N——J)




- 125 -

Does the distance formula give us the number of unit spaces in

each case? Let us see,

For tne ruler in Figure 10.8 the formula yields: AB

|-1-2|

|-10-(-7)]
For the ruler in Figure 10.10 the formula yields: AB = |2-(-1)]|

For the ruler in Figure 10.9 the formula yields: AB

Is 3 the value of AB in each case?

You know that the distance from A to B should be the same
as the distance from B to A, In the formula this reverses Xx,
and X;. Is it true that |%, ~ X} = |x3 -~ % |?

Let us review the results of this section in terms of map-

pings.

(a) A ruler assigns numbers x, and X to the endpoints of
AB. Thus A—x, and B—»2%;. Then we say AB = |x; - xa].

(b) Moving the ruler 2 spaces to the left (as we did) is a
translation with rule n—sn + 2, Thus X3 X; + 2
and xp—»-Xp + 2, We ask you to answer two questions:
(1) Does a translation preserve distance?

(2) 1Is |x - x| preserved under this translation?

Suppose the ruler were moved to the right. Are the last

two answers changed?

(¢) In Figures 10.8 and 10.9 we moved the ruler still
further to the left. Is the composition of two trans-
lations still a translation? Do the answers to our
two questions change?

(d) Let us compare the rulers in Figures 10.6 and 10,10.

b
Ge3
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Figure 10.11
Do you see a mapping of Z into Z with the rule n—=4 - n? Then
x—=4 - x and Kol - Xs . But (4 - %) - (4 - x5)] =
|x, - x,|. And again we can say "yes" to our two questions
above, We conclude that the distance formula gives the correct
distance for all positions of a ruler,

We use the term line coordinate system to describe the re-

lationship between the points and numbers on a number line, The
number assigned to the point is called the coordinate of the

point in the system., Using these terms we can say that the dis-
tance between two peints in a line coordinate system is the abso-

lute value of the difference of their coordinates.

10.7 Exercises

1. In this exercise use the numbers assigned by the ruler to
points in the diagram below. First express the length of
the segments listed below in the form |x - X.|. Then com-

pute the length.

T

A

T

1
/?

= .
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(a) AC (e) BC (1) ©D
(b) AE () BD (j) ¥C
(c) AG (g) 7B (k) EF
(a) FA (nh) GB (1) GF

2. A ruler, graduated with negative and positive numbers assigns
O to point A. What number does it assign to B if AB = 37%
(Two answers.)

3. A ruler assigns 8 to D. What number does it assign to E if
DE = 2. (Try to solve this problem by solving the equation
Ix - 8] =2.)

4, A ruler assigns 83 to F. What number does it assign to G if
FG = 6%?

10.8 Midpoints anc other Points of Division

Figure 10.12
Let a ruler acsign 8 to A and 15 to B, We shall try to
find the number assigned to C, the midpoint of AB. Let that
nunber be represented by x (See Figure 10.12). You recall that
a midpoint of a segment bisects it. This means that the length
of AC is the same as the length of CB. This explains statement
(1) velow. Explain (2). Now x-8 must be positive. Why? Also

15-x is positive. Why? So the equality in (2) implies (3).

)
Explain (4) and (5). Check whether for x = ll%, AC = CB,
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(1) Ac = CB (4) ox =23
(2) |x - 8| =15 - % (5) x =113

(3) =-8=15-x
Use this method of finding the number assigned to the midpoint
of DE if in a certain line coordinate system the ccordinate of D
is -2 and the coordinate of E is 5.

Let us generalize this method; that is, let us find a for-
mula for midpoints. In a line coordinate system let A have co-
ordinate x, and let B have coordinate Xs, where x; < Xz, and let

C, the midpoint of AB, have coordinate x (see Figure 10.13).

X X X2

Then, AC = CB

>

1
>4
KA

I
X
2

1
X

1
X = g(xl + Xa)
Do you recognize that x is the mean of X, and x2? This 1is an

easy way to remember the formula.

Figure 10.14
Suppose R is in PQ and it divides PQ in the ratio 1:2 from

P to Q. (The phrase "from P to Q" tells that PR corresponds to
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1 and RQ to 2.) To find X for the data shown in Figure 10.14

we can proceed as follows:

(1) fe--3x| = % or 2|x - 3] = |12 - x|

Both x - 3 and 12 - x are positive.

(2) 2 (x-3) =12 - x

(3) 2x -6 =12 - x

Check ?2--3-| = 3
(4) 3z =18 :
(5) x=6

Figure 10,15
Suppose, instcad, that R were notbetween P and Q, but that
P is between R and Q, as in Figure 10.15. Then 3 - x is posi-
tive, and 12 - x is positive. Then step (2) above becomes

(20) 2°(3 - x) = (12 - x). Complete the solution and check.

10.9 Exercises

In Exercises 1 - 4 you are asked to derive results which
are going to be used in later developments. In this respect they
differ from other exercises whose results can be forgotten with-
out harm to an understanding of future developments. These ex-
ercises are marked "#." 1In the following sections such exer-
cises will also be marked with the symbol "."
k1. Let B be an interior point of AC and !et a ruler assign

numbers 5 and 12 to A and C, as shown.
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(a) Wwhat is one possible assignment to B that guarantees
that B is an interior point of AC? Name three other
possible assignments to B that also guarantee that B
is between A and C. What are all the possible assign-
ments to B such that B is between A and C?

(b) Show that AB + BC = AC if B is assigned the number 8

or the number 11%.

(c) Show that AB + BC = AC if B is assigned the number x
such that 5 < x < 12,
This last result may be stated in general as follows:

If B is between A and C, then AB + BC = AC, It is called

the Additive Property of Betweeness for Points.
42. Suppose two circles in a plane have centers at A and B, and
respectively radii r, and rs. We are going to compare AB

with r, + rs for different positions of the two circles.

c

Figure 10.16
(a) Suppose the circles do not intersect as shown in Figure
10.16., Then AB = AD + DB (Why?) and AD = AC + CD.
(Why?) So AB = AC + CD + DB. But AC = r; and DB = rj.

Hence AB =r, + CD + ra. Thus AB> r; + rj.
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Figure 10.17
(b) Consider the position of the circles in Figure 10.17,
in which the cirecles just touch at C. Show that AB =

rl + I‘so

Figure 10,18
(¢) Consider the position of the circles in Figure 10.18
in which they intersect. One of the points of inter-
section is named E. Now AB = AC + CB, (Why?) and CB <
rs so AB<r, + ro. (Why?) EA and EB are also radii
and therefore EA = r, and EB = rp;. Therefore AB <
EA + EB.
1n words, this last result suggests that the length
of any side of a *riangle (AABE in this case), is less than
the sum of the lengths of the other two. We call this con-

clusion the Triangle Inequality Property. You should note

that for any triangle, there are three inequalities. Thus,

for ADEF (Figure 10.19)
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D

AN

Figure 10.19
(a) DE < EF + FD,
(b) EF < FD + DE,
(c) FD < DE + EF,
#39 For Figure 10.20, we see by the Triangle Inequality Property
that in 4ABD, DA + AB > DB. Use this fact to show that the
perimeter of ADAC is greater than the perimeter of ADBC.

Figure 10.20
#4. Show in any triangle that the difference between the lengths
of any two sides is less than the length of the third side.
5. Which of the following triplets of numbers may be the lengths

of the sides of a triangle?

(a) 5, 6,8 (d) 4.1, 8.2, 12.3
() 5,6, 11 (e) 18, 22, 39
(e) 1,2, 3 (£) 4%, 43, 43

10.10 Using Coordinates to Extend Isometries

Let us consider an isometry, f, of a pair of points {A, B}.
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If A—>A' and B—> B', then AB = A'B', How can we extend
this isometry to a third point of TB? This is easily done by
working with the line coordinate system on ﬁﬁ that assigns 0 to
A and 1 to B. 3ince AB = A'B' = 1, there is a coordinate sys-

tem on B 0" that assigns O to A' and 1 to B'.

A ] C
) x
[« 8’ A
x 1 [s)

Figure 10,21

Now suppese C is any point on Kg and let its coordinate be
X. We can extend f to C by taking for its image the point C' on
WB” whose coordinate is also x. To convince yourself that we
have succeeded in extending f you should verify that AC = A'
and HC = B'C'. You can do this by using the distance formula.
How can you extend f to other points of B2

Before we examine an isometry involving non-collinear points,
we will need 2 plane coordinate system.

Given three non-collinear points A, B, C we can introduce
a plane coordinate system (see Figure 10.22) much as a plane

lattice coordinate system was introduced in Chapter 7.

Take A as origin, ﬁg as x-axis, ﬁﬁ as y-axls, Assign to B the
coordinate 1 on the line coordinate system on ﬁﬁ, assign to C
the coordinate 1 on the line coordinate system on ﬁﬁ. The coor-
dinate O in both systems is assigned to A, Here we equip the

axes with line coordinate systems like those we have been using
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in this chapter {not just lattice points). The coordinates of a
point D in the plane are found, as before, by drawlng lines
through D parallel to the y- and x-axes. The line coordéinate of
the point E (where the parallel through D intersects the X-axes)
becomes the x~coordinate of D, and the line coordinate of F
where the other parallel through D cuts the y-axis) becomes the

y-coordinate of D. (In Figure 10.22 the coordinates of D are

(1%, 1%).)

y axis

(0,13) fr D( 1%, 13)
-———-—-’
(0,1) /
/
/
/
/
A /E o
/{(0,0) (1,0) (1% 0) x axis

Figure 10,22

Let us go on to consider an isometry, g, of three non-col-
linear voints A, B, C; and how to extend g to a fourth point in
the plane of A, B, C.

Draw a triangle with plane coordinates as shown in Figure
10.22. On another paper trace AABC, calling it AA'B' C', and
give A', B, C' the same coordinates respectively as A, B, C.
Take any point D on the first paper and read its coordinates.
Locate the point D' on the second paper with the same coordirnates
as D, Now place one paper over the other so that A— A',
B——B, C—>C'. Does D—>D'? What conclusion seems
indicated from this experiment? How can you extend g to other

[]{U:‘ points of the plane?
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10.11 Coordinates and Translations

As you will see, coordinates are quite useful irn studying
translations of points of a plane ontc points of the same plane.
Suppose point A has coordinates (1, 3} in some plane coordinate
system and is mapped onto A', with coordinates (%, 5) by a trans-
lation., We can regard this translation as the composition of
two motions. (See figure 10.23) The first moves a point 3
units in the direction of the positive x-axis and is followcd
by a second motion of 2 units in the direction of the positive
y-axis. Any other point of the plane will also have an image

under this composite translation.

Figure 10.232

The rule of this translation 15 easy to write.
X————>Xx + 3
y—————y + 2
or simply (x, y) ———(x + 3, ¥y + 2).
It is not hard to see that any mapping of the form
(x, y) ———(x + a, y + b)
is & translation in a plané coordinate system,
In Chapter 9 we said that a translation in a plane maps

lines onto parallel lines. Here, too, under the translation
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(% y)——r(x +3, y +2)
the point A (1, 3) {which means the point A with coordinates
(1, 3)] maps onto A' (4, 5), and B {3, 8) maps onto B' (6, 10),
so that AB maps onto the parallel iine W B (See Figure 10.24).
Now consider the effect of the translation
() y)———(x+ 2, y + 5)
on the points A and A*', k maps A (1, 3) into B (3, 8), and it
maps A' (4, 5) onto B' (6, 10), so that X&' || BB . |
Since 8B || B and T8 || B®, the figure ABR'A' is a
parallelogram. (It is a quadrilateral with opposite sides paral-

lel.)

Figure 10.24

We can now check some facts about parallelograms in terms
of coordinates, in particular, whether the diagonals bisect each
other. But the coordlnate formula for midpoints available to

us is for line coordinates. We must therefore develop a formula

for plane coordinates.
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In Figure 10.25 we show only the diagonal AB' of parallel-
ogrem ABB'A'. Let M be the midpoint of AB', and consider the
lines through A, M, and B that are parallel to the y-axis.
These lines intersect the x-axis in points A,, M;, and B,

respectively.

{6,101

0,3)
A

Figure 10.25

As you examine the coordinates of A;, M;, and By 1n the
line coordinate system on the x-axls, do you find that M, is the
midpoint of A, B,? Did you use the midpoint formula for line
coordinate systems to check your answer? Since M acquires its
x-coordinate from M, , we conclude that the x-coordinate of M 1s
also % (1 + 6) or Z. Using a diagram similar to 10.25 (drawing
parallels to the x-axls), show that the y-coordinate of M is
é-(3 + 10) or %?.

In general, if P has coerdinates (x,, yl) and Q has coor-

dinates (xs, ya2) then the midpoint of PQ has coordinates
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X +x3, N '*‘ya)

2 2

Now verify that the coordinates of the midpoint of BA' are
also (7, l%). Does this verify that the diagonals of ABB'A!
bisect each other?

There is a bonus in this development, which you will be
asked to prove in an exercise, It is this: In any parallelo-
gram the sum of the x-coordinates of either pair of opposite
vertices is the same., In fact we can go on to say that ABCD is
a8 parallelogram if the sum of x-coordinates of A and C equals
the sum of the X-coordinates of B and D and the sum of the y-
coordinates of A and C equals the sum of the y-coordinates of
B and U. We can prove this if we can show vhat AB || CD and AD ||
Ei;. Let us start with ABCD and coordinates in some system as
shown in Figure 10.26. Then we are told that

a+e=c+gandb+f=d+h
It follows that
% (a + e) = % (c + g) and % (b + £) = % (a + h).

D(Q,h) clef)

Aab) Bed)
Figure 10.26
This means that AC and BD bisect each other, say in M.
Thus M is the center of a point reflection that maps A onto C
and B onto D.
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In Chapter 9 we saw that a point reflection preserves
parallelism..Hence,?ﬁ?Il ©D. M is also the center of a point
symmetry that maps A onto C and D onto B, Thus, AD || BT,

We conclude that ABCD 1s a parallelogram.

10.12 Exercises

1, Let ABB' A' be a parallelogram. It can be regarded as having

been formed by a translation under which A————»A' and

B———B', Suppose A and B have coordinate (a,b} and
X Y

(c,d) respectively in some coordinate system..Let the
translation have the rule:
X————>x + p and y—»y + Q.
Then A' has coordinates (a + p, b + q) and B' has coordi-
nates (c + p, d + q).
(2) Using the midpoint formula show that AB' and A'B
bisect each other.
(b) Show that the sum of the x-coordinates of A and B! is
equal to the sum of the x-coordinates of A' and B.
(c) Show that the sum of the y-coordinates of A and B' is
equal to the sum of the y-coordinates of A' and B.

2, Suppose ABCD is a parallelogram and the coordinates of three
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vertices are given. Find the coordinates of the missing

vertex. Check your answers with a drawing.

(2) A (0, 0) B (3, 0) D (0, 2)
(b) A (0, 0) B (3, 2) D (2, 3)
(c) & (2, 1) B (5, 6) ¢ (o, 0)
(a) A (3, 2) ¢ (-3, 2) D (-2, 5)
(e) B (-3, 2) c (3, 3) D (2, 5)
(£) A (o0, 0) B (a, 0) D (0, b)
*(g) A (a, b) B (c, d) ¢ (e, )

3, Suppose ABCD is a parallelogram, that E is the midpoint of
AB and F is the midpoint of CD. Show that AECF is also a
parallelogram. (You can simplify the proof by using the
coordinate system in which A, B, D have coordinates (0, 0),

(1, 0) and (0, 1) respectively.)

] F C

/

A E 8

L, (a) Using the indicated coordinates, show that PQRS is a
parallelogram,

5(0,4) R4

To0) Q40
(b) Suppose B is the midpoint of 8§Q, that A is the midpoint
of 88 and C is the midpoint of BQ. Show that PCRA is
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5. For the parallelogram PQRS in Exercise 4 take any suitable
coordinates for the vertices and show again that PCRA 1s a
parallelogram. What is the significance of taking any suit-
able coordinates for P, Q, R, S7?

6. Using coordinates, show that translations preserve midpoints.

10.13 Perpendicular Lines

In Chapter 9 we studled reflections in a line. In this
section we use such reflections to review and extend the 1dea

of perpendicular lines.

Figure 10.27

In the diagram of Figure 10.27 you see that the reflection
of line a in 1line £ is line a'. Now a and a' are different
lines, and they intersect each other at point P, Why must P be
a point of 4? Imagine that a rotates around P as a pivot in the
clockwise direction. Let a' continue to be the reflection of a.
How does a' rotate? 1In the course of rotation, does a' ever
become the same as a?

Now rotate a in a counterclockwise direction. 1In the course
of this rotation does a' again become the same as a?

We see that a can be its own image, as it rotates about P,
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in two ways. In one of these a = 43 in the other a # 4, 1In
general two lines are perpendicular 1f they are different ilines,
and one of them is its own image under a line reflection in the

other.

Figure 10.28
We denote that a i1s perpendicular to £ by writing a i L,
Note that £ is also its own image under a reflection in a (Figure
10.28). So ¢ | a whenever a | £. Also note that the plane is
separated by each of the two perpendicular lines into two half-

planes.

————— --}-----4)
~

Figure 10,29
On a piece of paper draw line 4 and mark a point A, either
on or off £, as in Figure 10.29. Fold the paper along a line
containing A such that one part of 4 falls along the other., 1In
hcw many ways can this fold be made? You know that the line of
the crease is perpendicular to £, It would seem then that in a
given plane there is exactly one line containing a given point

that is perpendicular to a given line.
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10.14 Exercises

1.

For this exercise draw two parallel lines on your paper,

calling them a and b.

(a) Fold the paper so that one part of a falls along the
other part. Label the crease ¢. Is ¢ l a? Why?

(b} For the fold you made in (a), does part of b fall along
another part of itself? What bearing does your answer
have on the perpendicularity relation of ¢ and b?

(c) Tell how the results of this experiment support or do
not support thils statement: If two lines are parallel,
a line perpendicular to one is perpendicular to the

other.

h

cl a\

Suppose, as shown in the diagram above, thatﬁa L'ﬁé. Can
8 also be perpendicular to B3? Be ready to support your

answer.
01 02

i

Suppose, as shown in the diagram above, that £, | a and 4,
l a, Can 4, intersect 43? Be ready to support your answer.

If they do not intersect, how do you describe their relation-
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4k, Let A' be the image of A under a reflection in £, as shown
in the dlagram above, and let R intersect & in P. What
is the image of P under this reflection? You know that a
reflection in a line preserves distance, Compare AP with
A'P. Ve see that & | T8 and P is the midpoint of BA'. We

call £ the midperpendicular or perpendicular bisector of AA',

Show that every point in £ is as far from A as from A'. We
can state the result of this exercise as follows: Every
point in the midperpendicular of a line segment is as far
from one endpoint of the segment as from the other.

5. Suppose { is the midperpendicular of AB. Suppose E is in
the B-side of £, as shown in the diagram below.
(a) We can show that EA > EB as follows: (fou are to give

a reason for each statement.)

(1) A and B are on opposite sides of £.
(2) E and A are on opposite sides of 2.
(3) ER intersects £ in a point, say C, which is be-

tween A a.nd E. 150
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(4) EA =EC+ CA
(5) EC + CB > EB
(6) cB =cCA
(7) EC + CA > EB
(8) EA > EB
(») Suppose F is in the A-side of £, Show by an argument
like the one in (a) that FB > FA.
(c) State in words the proposition that was proved in (a)
and (b).

10. 15 Using Coordinates for Line and Point Reflections

For our present purpose we use a specilal coordinate system
in which the axes are perpendicular lines. Such special coordi-

nate systems are called rectangular coordinate systems. We shall

study reflections in their axes. Let zx be the line reflection
in the x-axis and let zy be the line reflection in the y-axis.

Let P have coordinates (2, 3).

Re P (2,3)

P Pigure 10.30
X

If Pp— {3, what are the coordinates of Q?

2
If P———QZ*-R, what are the coordinates of R?

1ol
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4
If Q-—JL—>S, what are the coordinates of S?

We can form the composition zy o} zx by taking the refleztion
in the x-axis, followed by the reflection in the y-axis. What
is the image of P under this composition? Does the image of P
change 1f we reverse the order of the reflections?

Now let us consider the same questions for a point A with-

coordinates (a, b).

)
1f A—2X—B, what are the coordinates of B?

)

Ir A—AY—>C, what are the coordinates of C?
o 4

If A—L—X D, what are the coordinates of D?

Do you agree that the rules for Zx and zy, when glven in

forms of coordinates of points are as follows:

for 4. X———>X, y-———>-y Or (x5 y)—(x, -y)
for zy: X —p=X, Yoy or (x, y)———(-%, y)

for 4, 0 #: X——=-X, y——>-y or (x, y)——(-%x, -y)

You must surely have noted by this time that the zx o ly is
a point reflection 1n the origin of the coordinate system. If we

denote this reflection 1n O, the origin, as Po we can state the

rule of Po in terms of coordinates as follows:
Po
(%, y)——(-x, -y)

10.16 Exercises

1. For each of the points with coordinates in a rectangular

1%
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coordinate system given below find the coordinates of its
image:

(1) wunder the line reflection in the x-axis

(2) wunder the line reflection in the y-axis, and

(3) under the point reflection in the origin
(a) (3,5 (e (5,-3) (e) (2,0 (g (-3, -1)
(b) (-3,5) (a) (-3, -58) (£) (o0, 5) (n) (82, -£43)
Let 4 be the line that 1s perpendicular to the x-axis con-
taining the point with coordinates (3, 4) in some rectangular
coordinate system. Let points have the coordinates listed
below. Find the coordinates of the image of each point under

a line reflection in 4.

YA LA
|
l(3,4)
i
. —_— .
- 5 I >
|
!
l I
Y

(a) (l: 4) (C) (3: 2) (9) (0, 0) (g) (8: 3)
(b) (o0, 3) (a) (-3, -1) (f) (10, 0) (n) (x, y)
Let m be the line that 1s perpendicular to the y-axis of a

rectangular coordinate system, and contains the point with
coordinates (3, 4), Pind the coordinates of the image of
each point in Exercise 2 under a line reflection in m.,

Find the coordinates of the image of each point in Exercise
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2 under a point reflection in the origin O,
5. Let A and B have rectangular coordinates (1, 5) and (3, 1)

respectively.

4 4

(a) Let A—2s A and B—X -+ B'. Find the coordinates

of A' and B'.

(b) Find the coordinates of the midpoint M of AB and let

2
M—=%>M . Find the coordinates of M' .

(c) Show that M is the midpoint of A'B'.

6. Show that the line reflection in the x-axis preserves mid-
points. You might wish to work with points A and B having
coordinates (2a, 2b) and (2c¢, 24d).

7. Show that the point reflection in the origin O preserves
midpoints.

8. (a) Determine whether the points with coordinates (1, 3),

(4, 1), (10, -3) are on the same line.

(b) Find the coordinates of the images of the three points
in (a) under the line reflection in the x-axis, and
determine whether or not the images are on a line.

(c) State in words what the results of this exercise seem
to indicate.

9, Using the three points in Exercise 8 show that their images

under a point reflection in the origin are on a line.

10,17 What is an Angle?

No doubt the word "angle" has some meaning for you. However,
you may find it quite difficult to describe it precisely. To
see just how difficult, you might try to explain what an angle

iod
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is to a youngster iIn the first or second grade. A particularly
difficult task would be to describe it wlthout diagrams,

(To see how important angles are in everyday thinking, one
can look up the word angle and related words 1n the dictionary.
You will be asked to do this in an exercise.)

You probably would say that the diagram in Figure 10.31
represents an angle, But is the entire angle shown? Is the
fact that'ﬁx and 53 have a common endpolnt significant? Are the
points between A and B part of the angle? These are some of the
questions that must be answered in giving a precise mathematical

meaning to the word "angle,"

Figure 10,31

After carefully reading the following you should be able

to answer all of them.

| FH

1

Pigure 10,32
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Let us start with two lines intersecting at 0, as shown in
Figure 10.32. We naie them oY and 53. With these lines given
we shall show in stages how the angle emerges. First we take
the halfplane with boundary 5K that contains B. It is indicated
by vertical shading lines. Then we take the halfplane with boun-
dary‘SB'that contains A. It is indicated by horizontal shading
lines. The region that is crosshatched is the angle. It is
the intersection of the two halfplanes. It is named ZAOB,.

Each point used in the name signifies something. O is the point
of intersection of the two lines. It is called the vertex of
the angle. A and B tell us which halfplane to take. OR and OB

are the endrays or sides of the angle. There are other rays in

the angle. Any ray starting at O and intersecting any interior

point of AB is called an interior ray of the angle. All points

8
Figure 10,33

of the angle, not in endrays, are called interior points of the
angle and the set of interior points is called the interior of
the angle. The points in the plane of LAOB that are not points
of the angle are called exterior points of the angle. (Note
that the points on the endrays of an angle are points of the
angle, but not interior points.) It 53 = 53 and O is between A

and B, then we cannot build up the angle as described above.

106



O

- 151 -

A

De
o¢

>~ - - ——p
0 B

Figure 10.34

Nevertheless we call any halfplane with boundary ﬁﬁ, with 0 as
vertex, a straight angle. If O is not between A and B, then 5?
and 63 name the same ray. In this case LAOB collapses into a
ray, and we will call LAOB ='5f = 5§'a zero angle.

Does our definition of an angle differ from what you have
previously learned about angles?

If so, we ask you to consider the fact that a definition
is an agreement among ourselves as to what a word shall mean.
Once the agreement is made, however, we must stick with 1t and

with its consequences.

10,18 Exercises

1, Draw two intersecting lines on your paper and label points
as in the diagram. Using ordinary black pencil shade the

blue pencil black pencil

A
black ink

D-side of ﬁg with rays parallel to 533 using black ink shade

red pencil

the C-side of ﬁﬁ with rays parallel to oc. Using red pencil
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(or any available color) shade the B-side of €3 with rays
parallel to —B. Using the blue pencil (or any cther avail-
able color) shade the A-side of EB'with rays parallel to 0X.
You can now describe LAOD as the blue-black pencil angle.
In similar manner describe LBOD, LAQOC, LBOC.

2., Using the diagram shown below, name:
(a) four straight angles
(b) four zero angles

(¢) four other angles

/

3. Using the diagram shown below, describe as a single angle,
i if possible:
(a) LAOB U LBOC
(v) cAOC N LcOB
(c) ctaoc U LBOD

(da) LAoCc N Lcop /
A

Q 4, fThere are ten angles in the diagram of Exercise 3, Fecur of

108




- 153 -
them are zero angles., Name the other six.

5. You may have noticed that there are many resemblences be-
tween an angle and a segment. For each sentence below
about segments write one that resembles it and is about
angles.

(a) A segment has two endpoints.

(b) A segment is a set of points.

(c) The interior of a segment contains points of a segment
other than its endpoints,

(a; If C and D are interior points of AB, then every point
in CD is in AB.

6, Consult a dictionary to find five uses of angles.

10.19 Measuring an Angle

You have noted in Exercise 5 above a number of resemblences
between angles and segments. It should not surprise you that
the measurement of angles also resembles the measurement of seg-
ments, To measure a segment we use a scaled ruler. To measure
an angle we use a scaled protractor. The numbers on a ruler are
assigned to points. The numbers on a protractor are assigned to

rays. (In Figure 10.35 only three rays are shown).

fio 100 90 80°

A 0 B
o Figure 10,35
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Numbers on ordinary rulers start at zero and go on as far as per-
mitted by the scale unit and the length of the ruler. No matter
how large the protractor we arc going to use, its numbers start
with O and end with 180.

As you see, a protractor has the shape of a semi-circle.
7AB is the diameter of the protractor and O is its center. In
Figures 10,35 the numbers increase in the counter-clockwise di-
rection, However, if we reflect the protractor in the line that
is the midperpendicular of AB, then each number n is mapped onto
180-n. In a protractor showing the images of this line reflec-
tion, the numbers increase in fthe clockwise direction (Figure

10.36),

A 0 B
Figure 10,36
In either case the ray which lies in the midperpendicular of AB
is assigned 90.

To measure an angle with a protractor we must begin by
placing the center O on the vertex of the angle, and each ray
of the angle must intersect the edge of the protractor. Perhaps
the position of a protractor in measuring LABC could be 1like
that shown in Figure 10,37.

160



- 155 -

Figure 10,37

In this position the protractor assigns the number 30 to
BC and 103 to —R. It cannot come to you as a surprise that the
measure of LABC is 103 - 30 or 73. Or if you computed 30 - 103,
you would then take the absolute value of the difference, Just
as we did in measuring line segments. When the protractor is
graduated from O to 180 we call the unit of measurement a degree.
When we say that the measure of LABC is 73 degrees, or 730, we
are also saylng that we used a protractor graduatéd from O to
180. (There are other types of protractors graduated from O to
other numbers.) In measuring a line segment we like to place
the ruler so that it assigns O to one end, for this considerably
simplifies the computation. 1In measuring an angle we also like
to place the protractor so that zero is assigned to an endray,
for the same reason.

The abbreviation for "derree measure of LABC" is mLABC.
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10,20 Exercises

e
-

G 0 A
1. Consult the diagram above to find the measure of each angle

listed below:

(a) csaoc (e) LBOE (i) LGoOA
(p) LBOC (£) LFOB (3) LAcG
(c) LcoB (g) tLGoC (k) LAOD
(da) LAOF (h) LEOE (1) +DoOG

2. Using the dlagram shown below, find the measure of each

angle listed below:

(a) saoc (d) LFOG
(b) LBOD (e) LGOE
(¢) <DOC (f) LFOB
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Censult the diagram of Exercise 2 to compute each of the
following:

(a) mLAOB + miBOC

(v) mGOA - m/COA

(c) 2mLAOB + 3mLCOD

If two angles in a plane have the same vertex, and only one
ray in common, they are called a pair of adjacent angles.
From the diagram determine which pair of angles listed below

are adjacent angles.

A c

(a) (ABD and .CBD
(b) /ABC and /LCBD
(c) LDBA and ZABC

In the diagram above name as many pairs of adjacent angles

as you can.
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Using an illustration show that the sum of the measures of
two adjacent angles is not necessarily the measure of an
angle,

Using a protractor, find the measure of each of the angles

listed for the diagram below:

(a) (AVB (d) LEVC (g) ¢(BVF
(v) /DVC (e) LAVE (n) LAVD
(c) cave (f) LFVD

A

Consider LAOB, as shown in the diagram and the point reflec-~
tion of LAOB in vertex 0, Under this reflection the image

of endray 5K> is 5§>, the opposite ray. What is the image of

5E>? What is the image of GK? an interior ray of LAOB? What
is the image of LAOB? The image of an angle under a point

reflection in its vertex is its vertical angle.
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9. (a) In the diagram of Zxercise 8, what is the vertical angle
of LDOC?
(b) Wwhat is the vertical angle of LAOB?
10, Using a protractor show that the measure of an angle is
equal to the measure of 1ts vertical angle,
11, AB and AC are two sides of a triangle. They determine two
endrays Kﬁ and 53 of an angle. In this sense every triangle

has three angles. We can name them LA, LB, and LC.
A

8 [

Measure each angle of the triangle and then find the sum of

their measures.
12.

(a) Explain why we cannot use the

Qost

protractor in the position

SEL

shown here to measure LAOB.
A (b) Can the measure of an angle
be greater than 180°? Explain

your answer.




13.

14,

15.

Look at /BVC in the diagram below., Now look at LAVD. Com-
pare their measures. (Try to answer without the use of a

protractor.)

You know that two perpendicular lines determine four angles
disjcint except for their sides. What is the measure of
each angle?

(a) Measure LAVB in the diagram below. Using your result,

find the measure of LBVC,

(b) Suppose the measure of LAVB is 40, what is the measure

of LBVC? Try to answer without using a protractor.

10.21 Boxing the Compass

As you know the marks on a ruler are located by repeated

bisections, once we start with inch marks. The first bisection

produces a ruler like this:

Pigure 10,38
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A second bisection produces a ruler like this.

PLETEET

T
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~oo—
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-~ —

& e
~ |-
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~ st

2 e
&,u

\
L
4 4 )

2

Figure 10.39
Repeated bisections produce eighths, sixteenths, and thirty-
seconds.
There is an analogous situation for protractors, more
accurately for two protractors, placed diameter to diameter to

form a circle, It 1s called boxing the compass, and gives the

type of compass used in certain types of marine navigation.
A diameter of elther protractor bisects the circle. One
end of this diameter 1s marked N (north) and the other is marked

S (south). (Figure 10.40)

First Blsection
Figure 10.40

Bisecting each semi-circle locates E (east) and W (west).

(Figure 10.41)
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N
w<::::::
S
Second Blsection
Figure 10.41
Bisecting each of the four arcs locates NE (northeast), SE
(southeast), SW {southwest), and NW (northwest). Notice we do
not say "eastnorth," The rule is that "north" takes precedence
over "east" and "west" because it appeared earlier in the process.

Likewise, we say southeast because "south" appears before "east"

in the process.

Third Bisection
Figure 1C.42
Bisecting each of the eight ares locates NNE (northnorth-
east), ENE, ESE, SSE, etc. 1In the designation NNE, N appears
before NE because it 1s on the N side of NE. Thus, ENE is on
the E side of NE.
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Fourth Bisection
Figure 10.43
The fifth bisection completes boxing of the compass. The
midpoint of the arc between N and NNE is called N by E (north
by east); the one between NNE and NE is called NE by N, Not
NNE by S. Why not?

N Nby

NE byN
NE
NE by €
ENE
EbyN

H

Fifth Bisection
Figure 10.44

Make a complete diagram showing the compass "boxed."

The circle is now subdivided into 32 arcs, each having the
same measure. The mariner calls each measure a "point." This
point does not mean the point we study in geometry. The terms
"half-point" and "quarter-point" describe still smaller arc
lengths., Since there are 8 points to one quarter of a circle,
one point corresponds to llko. So a change of course of one-

quarter point corresponds to a change of approximately 30.
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Thus the kind of "protractor" used in some types of naviga-

tion is quite different from the one we described in Section 10.19,

10.22 More About Angles

Draw ray Vﬁ on your paper and place your protractor so

that VK is assigned zero. In how many possible positions can

r i
Figure 10.45

you hold the protractor? (Were you careful to place the center
of the protractor on V?) For each pesition, draw a ray, starting
at V, to which the protractor assigns the number 70. How many
such rays can you draw for each position? How many angles then
can you draw having measure 70o if 73 is one of the sides?

Do you agree with this statement?

For each ray, for each halfplane containing this ray in
its boundary, and for each number x, such that 0< x < 180, there
is exactly one angle with measure x that has the given ray as
one side.

This statement is going to be very useful to us in our
study of angles. For instance, we can now show that any angle,
such as LAVB, can be divided into two angles that have equal

measures. To do this, we place a protractor in the position

B

10

v A
Figure 10.46
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shownjy see that 110 is assigned to Vﬁ and reason that we are
looking for the ray that is assigned % of 110 or 55. We look
for 55 on the protractor and draw 73, the ray that 1s assigned
55, What 1s miZBVC? miCVA? Have we divided LAVB into two an-
gles as claimed? How can we use the statement above to show
that an angle has exactly one midray?

In our example 73 is called the midray of LAVB for obvious
reasonsy it bisects the angle, and is therefore also called the
bisector of LAVB. Explain why any angle, other than a straight
angle, has only one midray.

We pause here to introduce some terms describing angles.
If the measure of an angle is 90, it is called a right angle.
If the measure of an angle is between 0 and 90, it is called an

acute angle. If the measure of an angle is between 90 and 180,

it is called an obtuse angle,

10.23 Exercises

1, PFor each number listed below draw an angle whose measure is
that number:
(a) 35 (p) 135 (ec) 18 (d) 90 (e) 180 (f) ©

2. Draw an angle which ls:
(a) a right angle (c) an obtuse angle
(b) an acute angle

3. This exercise is a test of how well you can estimate the
measure of an angle from a diagram. For each of the angles
given, estimate the measure, record your estimate, and then use

your protractor to check your estimate.
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LN
N
N\

4, This is an exercise to test how well you can draw an angle

wlthout protractor when you are told its measure., Draw the
angle first, then check with protractor, and record the error
for each of the following measurements:
(a) 45° (e) 150° (e) 60°
(b) 30° () 90° (£) 120°

5. How close can you come to drawing the midray of an angle
without using a protractor? Try it for these cases: an

acute angle, a right angle, an obtuse angle.

12
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6. Try to draw a triangle that has two right angles. If you
are not able to do so, explain the failure.
H?. In this exercise, we consider what it means when three rays
have the same vertex; that is to say, when one is between

the other two.

(a) Look at rays VK, Vﬁ, and VC in the diagram. Would you
say that one of them 1s between the other two? If so,

what would you mean?

(b) Now look at OB, 0Q, and OR in the second diagram.
Would you say that one of these 1s between the other
two?

(¢) 1In (a) is VR a ray of LBVC? Is VE a ray of LCVA? Is
7 a ray of LAVB?

(d) 1In (b) is OF a ray of LPOR?

(e) Formulate a definition for betweeness for rays.
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#8. Draw LAVB and an interior ray 78 of this angle. We say that
78 is between‘V? and Vﬁ. Using a protractor show that mlLAVC
+ mLCVB = mLAVB., This result is important enough to have a

name. It is the Betweeness-Addition Froperty of Angles,

State it in words. There 1s also a Betweeness-Addition

Property of Segments. State it.

10.24 Angles and Line Reflections

Make a drawing like the one in Figure 10.47, with VM the
midray of LAVB, (We have an angle of 350. You can use any an-~

gle you like.)

Figure 10.47

If you fold your paper along VWL do Vﬂ and VB fall on each other?
Then we may say:

Each endray of an angle 1s the image of the other

under the line reflection in the line containing

the midray of the angle.
Suppose X is the point in VR such that VX = 2. Where would you
expect to find the image of X under this line reflection £°?
Let X-——i—*-Y. Then VX = VY, Moreover, the perpendicular to
vﬁ that contains X must also contain Y. Why? We conclude that
% ] M. Also if Z is the point in which ¥¥ intersects M, then
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XZ = YZ. Why? One more rasult. In folding your paper, did
LVXY fall on AVYX? Then mLVXY = mLVYX.

Let us summarize these results, If W is the midray of
LXVY, VX = VY, and Y? intersects Vﬁ in Z, then:

(1) wunder the 1line reglection 4 in T, V-——%-—>V,
X-——z——b-Y, Z——>7. Since a line reflection
is an isometry, VX = VY, XZ = YZ. Also X¥ | WM.

(2) mLVvXZ = mLVYZ.

The second fact rates attention because it is a special
case of a more g3neral statement which we are now ready to under-
stand. It applies to all isometries, of which line reflections
are only one kind.

Under any isometry the measure of an angle is the same

as the measure of its image angile.

We shall pursue this further in the next section. Meanwhile,

we apply our results to a special type of triangle. If at least
two sides of a triangle have the same length it is called an
isosceles triangle. These two sides are called the legs of the
isosceles triangle; the third side is called its base. The
angles of the triangle having vertices at the ends of the base
are called base angles, the third angle is called the vertex
angle. Let AABC be an isosceles triangle with AB = AC,

A

B " C

Figure 10.48
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and let the midray of the vertex angle intersect the base in

point M (Figure 12.48). Thenzunder the line reflection ¢ in T,
2

A———A, M\————>» M, B——C. By our previous results we

conclude:

(1) The base angles of an isosceles triangle have
the same measure.
(2) The midray of the vertex angle of an isosceles

triangle lies in the midperpendicular of the base,

10.25 Exercises

1., Suppose D, B, C, E are on a line as shown below, and A 1s

not.

If AB = AC, show by an argument that mLABD = mLACE.

A

D

B [

z

C

- = | —— s e e o e

2. For the figure in Exercise 1 add the information that BD = CE.

Using the line reflection 4 in ﬁﬁ, where &M is the midray

of LBAC, explain why each of the following is true or false:

(a)
(v)
(c)
()
(e)

‘M is the midperpendicular of DE.
y y
E ——D and D———— & and DM = EM.

4
D ———AE and AD = AE,

B o7 ana T8 —e T2,

mLDAB = mLEAC.

3. Suppose PQ = PR and QM = MR as shown below. Let £ be the

midperpendicular of QR. Do you think that £ contains P?

15



4,

- 171 -

Support your answer with an argument.

[ 4

In the dilagram below AD = AB and DC = CB.

A

C

(a) What kind of triangle is ABD? CBD?

(b) How is the midray of LBAD related to BD?
How is the midray of LBCD related to BD?

(c) How many midperpendiculars of DB are there?

(d) The figure ABCD has the shape of a kite, so we call it
a kite. You see that it can be mapped into itself by
a line reflection in ﬁé. List five pairs of angles in
the kite for which the angles in each pair have the
same measure,

In the diagram below the four sides AB, BC, CD, and DA have

the same length. It is a kind of "double kite." Show that

its diagonals bisect each other and lie in perpendicular

lines. A

179
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[
10.26 Angles and Point Reflections

In an exercise (10.20 Exercise 8) we noted that the image
of an angle under a point reflection in its vertex is its vertical
angle, It quickly follows that the measure of an angle is equal
to that of its vertical angle. This is a valid conclusion.
Nonetheless, let us explore the situation a little more, partly
to review some basic notions and partly to illustrate a proof
which resembles many that will follow.

Suppose LABC is a given angle (Figure 10.49), 1If B is the
midpoint of AA' and also CC', then LA'BC' is the image of LABC
under a point reflection in B, We can easily locate A' and C' by
using a compass with B as center, Now look at the quadrilateral
ACA* C', TIts diagonals bisect each other. Then what kind of
quadrilateral 1is ACA'C'? How does your answer lead to the con-
clusion that CA = C' A'?

Let us review three facts: (1) AB = A'B, (2) ¢cB = C'B,
(3) CA =CA'. Do not these three facts show that the mapping

Figure 10,49

under which A ——»A', B———>» B, C—> C' is an isometry?

178
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We conclude that mLABC = mLA' BC'. (Remember that an isometry
preserves angle measure,) In this example we feviewed the basic
notion of an isometry and we have seen how to use some properties
of parallelograms in a proof.

Suppose the center of a point reflection is not the vertex
of an angle. In each of Figures 10.50 and 10.51, the image of
LABC is LA'B' C' under a point reflection in O, a point which 1s
not the vertex B, Verify in each case that O is the midpoint
of BA', BB', and CC* . This should assure you that we do indeed

have a point reflection in O,

Figure 10.51

In each case the mapping of A, B, C onto A', B', C' respectively,
can be shown to be an isometry; that is AB = A'B', BC = B'C and

179
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CA = C'A', Find two parallelograms in Figure 10.50 that help
to show why AC = A'C' and BC = B'¢'. Try to figure out why

AB = A'B'. In Figure 10.51, we can find three parallelograms
that help in proving that the mapping is an isometry. Name the

three parallelograms.

10,27 Exercises

1, Use a protractor to measure only one of the four angles,
LAVB, LBVC, LCVD, LDVA and then tell the measures of the

other three,

2. Draw a diagram showing the image of LABC under a point reflec-
tion 1in O for each of the following cases:
(a) 0 is a point in BR, not B.
(b) 0 is a point in BG, not B.
(c¢) 0 is an interior point of LABC.
(d) 0 is an exterior point of LABC.
3. Copy a figure like the one shown below. Be sure to take O
as the midpoint of VA, Draw the image of LAVB under a point

reflection in O.
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Under this mapping what is the image of V? What is the
vertex of the image angle? If B' 1is the image of B under

the point reflection in O, show that =B || ﬁ? The statement
of this result is quite complex. We start it and you are to
complete it: If the center of a point reflection of an angle
is a point, but not the endpoint, of an endray of the angle,
then the image of the second side ...

Draw an angle and its midray, and take any point, not the
vertex, of its midray. Draw the image of the angle under a
point reflection in this midray point. You should note that
the angle and its image determine a quadrilateral. List

some of the properties of this quadrilateral that you can find.
Repeat the instructions in Exercise 4 with the modification
that the center of reflection in an interior point of the
angle, not in the midray.

Suppose ABCD is a parallelogram. Is there a point reflection
under which D — B, A— C? What is its center?

How do your answers help to show that each angle of a paral-

lelogram has the same measure as that of the opposite angle?

A

10.28 Angles and Translations

Let LAVB be mapped by a translation such that the image of

A (A

101
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Vis v, (See Figure 10.52,)

Figure 10.52

Let the images of A and B be A' and B' under this translation.
Since a translation is an isometry, and we have agreed that iso-
metries preserve angle measures, it follows that mZA'V Bt =
mLAVB, Further results relating angles and translations are

explored in the following exercises.

10.29 Exercises

&l. Copy LAVB and then show a translation of LAVB by a drawing
that maps V onto A. Let the translation map A onto A' and
B onto B'. Under this translation what are the images of
Vﬂ, Vﬁ, LAVB? We may call the pair of angles AVB and A' AB

"F angles" because they form an F figure.

2. (a) Repeat the instructions in Exercise 1 for the translation

that maps A onto V.

162
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(o)
3. Let T1

Repeat agaln for the translation that maps V onto B.-
be the translation that maps A onto V and Ty the
translation that maps V onto B.

(a)

Copy the diagram below, and in it make a drawing for

(b)
(c)

Make a drawing for Ty o T, in the same diagram.

Are the images of LAVB under both compositions the

same? Are the drawings the same?

4, In the diagram below B3 || ¥V and M is the midpoint of QV.

(a)
(v)
(e)

(a)
(e)

Describe a mapping under which the image
Describe a mapping under which the image
Describe a mapping under which the image
£3QV, Is this mapping on isometry?

Describe a mapping under which the image

Under what composite mapping is LSQM the

of LPVQ 1s LRQT.
of LPVQ 1s LV@QS.
of LRQT 1s

of LRQT is LSQM.
image of LPVQ

if a translation is first in the composition?

R
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(f) Compare the measures of LPVQ and 43QV. We may call
angles PVQ and SQV "Z angles" because they form a Z

figure.

10.30 Sum of Measures of the Angles of a Triangle

No doubt you have measured the three angles of a friangle
and have found the sum of thelr measures to be approximately
180. Let us see how isometries can be used to prove the sum is
exactly 180,

Figure 10,53 shows an image for each angle of AABC under
different mappings.

First consider the translation that maps A onto C. This
translation maps C onto R and B onto S, What are the images of
'Kg and Kﬁ under this translation? Do you see that this trans-
lation maps LCAB onto LRCS? '

Examine the translation that maps B onto C. Under this
translation what is the image of BR? of LABC?

Figure 10.53
The third mapping is a point reflection in C. Under this
mapping what is the image of LACB?
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As a result of these mapplings, all isometries, we see:

(1) mLCAB = mLRCS,
(2) mLABC = mLPCQ,
(3) mLBCA = mLQCR.

If the sum of the measures of the image angles is 180, then we
can safely conclude that the sum of the measures of the angles
of the rlangle must also be 180,

Do you think the first sum is 180? wWhy? In answering this
questlon remember that no statement was made concerning whether
Eg and E? were on one line. Are they? Why?

One can prove the above result by using other 1lsometries,
and you may find 1t interesting (in exercises) to find your own.

There are many immediate results followil .g from the triangle
measure sum. For instance we can now show: If a triangle has
a right angle then the sum of the measures of the other two
angles 1s 90. The proof can be presented 1n a step by step
argument as follows:

(1) Let AABC have a right angle at C.

(2) miA + mLB + mLC = 180

(3) miC =90

(4) miA + mLB = 90
We can give a valid reason for each of these statements, The
reasons, numbered to let you see which reason applies to each
statement, are as follows:

(1) This information is given.

(2) We have proved this already. Let us call it the

Triangle Angle Sum Property.

4 QR
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(3) The measure of a right angle is 90.
(4) The cancellation law for addition.

Here is another immediate result with its piroof:

The sum of the measures of the angles of a plane

quadrilateral is 360.

Figure 10.54 will help you follow the argument,

o]
Figure 10.54
We ask you to assume that EB is an interior ray of LABC and ﬁg
is an interior ray of LADC.

(1) mLA + mLZABD + mZBDA = 180

(2) mLGC + mLDBC + mLBDC = 180

(3) mLABD + mLDBC = mLABC or m.B
(4) mLBDA + mL{BDC = wmLCDA or miD
(5) mLA + miB + mLC + miD = 360
The reason for (1) and (2) is the Triangle Angle Sum Property.
Statements (3) and (#) have the same reason, the Betweenness-
Addition Property of Angles. (See Section 10.23 Exercise 8.)
The reason for statement (5) is: 180 + 180 = 360.

In exercises you will be asked to prove many other state-

ments which follow from the Triangle Angle Sum Property.
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10,31 Exercises

1,

Find the measure of the third angle of & triangle if you

know the neasures of the first two to be as follows:

(a) 80 and 30 (b) 62 and 49 (c) 40 and 129

The measures of two angles of a triangle are the same,

What 1is their measure if the measure of the third angle is:

(a) 80 (b) 20 (e¢) 68 (a) &

What is the measure of each angle of a triangle whose angles

all have the same measure?

The measures of two angles of a triangle have the ratio 3:5.

What are their measures if the third angle has a measure of:

(a) 100 (b) 68 {e) 30

What is the measure of an angle of a quadrilateral if the

measures of the other three angles are:

(a) 120, 80, 62

(b) 100, 62, 62

(c) 168, 72, 48

Show that if three angles of a quadrilateral are right angles

then the fourth angle must also be a right angle,

Let ABCD be a parallelogram. Show that mlZA + miB = 180 and

miC + mLD = 180,

Give an argument for each of the following statements. It

need not be a step by step argument.,

(a) Two angles of a triangle cannot both be obtuse.

(b) If a triangle 1is isosceles then its base angies are
acute angles.

Prove each of the following. If convenient, use a step by

187
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step argument.

(a) 1If in AABC, AB = BC = CA, than mLA = 60.

(b) The figure below has 5 sides and is called a pentagon.
Assume that KB, Kﬁ are Interior rays of LEAB, that 53
is an interior ray of LEDC, and that EK is an interior
ray of LDCB. Show that the sum of the measures of the
angles of ABCDE is 540,

(c) Assume in (b) that the measures of all the angles in
ABCDE are the same., Show that each measure is 108.

10, (a) Using the data indicated in the diagram below find m/ZBCD

8
60

(b) Suppose mLA = 52, mLB = 65, Again find mLBCD.

(¢) ™o the results in (a) and (b) suggest a relationship
between mL{BCD and miA + mLB?

(d) show for all measures of LA and of LB, that m{BCD =
mLA + mlLB,

11, (a) In the diagram below, find mLADC.

(b) Find the measures of the angles in which arcs are drawn,

in the same dlagram,

(¢) PFind the sum of *he measures in (b).

&

5

503

b
b
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Take another set of measures for the three angles of
quadrilateral ABCD and find the sum of the "“arc" angles
for your new measures.

Do your results in (c) and (d) indicate a pattern?
Complete and prove the following statement: For quadri-~

lateral ABCD, mLPAD + mLRCB + mLSBA = ?

A figure such as ABCDEF has six sides and 1s called a hexagon.

Find the sum of the measures of its angles.

Let X be a point in 7B as shown. CLCBX is called an

exterior angle of the hexagon. Find the sum of the
measures of the exterior angles of the hexagon, one
taken at each vertex.

If all the angles of a hexagon have the same measure,
what is the .neasure of each angle, and what 1s the mea~

sure of one exterior angle?

Repeat Exercise 12 for a figure having 8 sides; 10 sides.

163
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10.32 Summary

1.

2.

This chapter discussed segments, angles, and isometries.

The major items relating to segments are the following:

(a) The Line Separation Principle leads to subsets of lines,
open halflines and rays, and then to segments.

(b) The distance formula: If X3 and X aie line coordinates
of A and B, then AB = |x;, -~ X2| = |x2 -~ %1 ].

(c) The midpoint formula: If X, and X, are line coordinates
of A and B, then the coordinate of the midpoint of AB
is %(xl +x2).

(d) The Betweeness-Addition Property of Segments: If B is
between A and C, then AB + BC = AC.

(e) The Triangle Inequality Property: The sum of the
lengths of two sides of a triangle is greater than the
length of the third.

The major items relating to angles are the following:

(a) The Plane Separation Principle leads to open halfplanes,
hal’fplanes, and angles, which are intersections of
halfplanes,

(b) The angle measure formula: When the center of a pro-
tractor 1s placed at the vertex of an angle, if r, and
ra are the numbers assigned by the protractor to the
two sides of the angle, the measure of the angle is
Iry - ral =irs - n .

(c) Boxing the compass is accomplished by the repeated bi-

section of arcs, comparable to the bisection method
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used in graduating a ruler,
(@) Angles are classified as zero, acute, right, obtuse
and straight angles.
{(e) The Betweeness-Addition Property of Angles: If VB is
between VK and've, then mLAVB + ml{BVC = mLAVC.
3. Isometries, A major item is: Isometries preserve angle
measure,
(a) Using line reflections we can show:

(1) An angle is its own image under the line reflection
in its midray. This leads to related isosceles
triangle properties, and kite properties.

(2) Every point in the midperpendicular of a line
segment is as far from one endpoint of the segment
as from the other.

(3) The rectangular coordinate formula for the reflec-
tion in the x-axis is (x, y)————=(x, -y), for
the reflection in the y-axis, {(x, y)——(-x, ¥).

(b) Using point reflections we can show:

(1) The measure of an angle is the same as that of its
vertical angle.

(2) The measures of opposite angles of a parallelogram
are the same.

(3) The angles in a "Z figure" have the same measure,

(4) The coordinate formula for the point reflection in
the origin of a rectangular coordinate system 1s

(x, y) —(-x, -y).

§91
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(¢) Under a translation we can show:
(1) The angles in an "F figure" have the same measure,
(2) The coordinate formula for a translation is:
(x, y)=>(x + p, ¥ + @), if the origin is mapped
onto (p, a).
Using point reflections and translations we can show why the
sum of the measures of angles of a triangle is 180. This

leads to a long 1list of immediate results.

10.33 Review Exercises

1.

Let a mathematical ruler assign -2 to point A and 4 to
point B.

(a) What is AB?

(b) What number does the ruler assign to the midpoint of

AB?
(¢) C is a point in BB. If AC + CB = AB what are the pos-

sible assignments the ruler can make to C?
(d) If D is between A and B and AD = 2DB what is the number
assigned to D?
(e) What numbers may be assigned to point E if AE = 6 and
E is in AB?
In Exercise 1 replace -2, the number assigned to A, with -12
and replace 4, the number assigned to B, with -6. Answer
the questions in Exercise 1 for these replacements.
A protractor with center at V assigns 10 to VK and 110 to Vg.
(a) wWhat is mLAVB?

(b) What number does the protractor assign to the midray

)

T
A



- 187 -

of LAVB?

(c) The protractor assigns 120 to 73. Is Vﬁ between VX
and VB?

(a) Wwnat must be true of x if x is the number assigned to
a ray that is between VR and Vﬁ?

(e) Suppose ¥R is an interior ray of LAVB, what is mLAVX +
mLXVB?

(f) Suppose T¥ is an interior ray of LAVB such that mLAVY
= 2mlLYVB. What number does the protractor assign to
2

4, In Exercise 3 replace 10, the number assigned to Vf, with
122, and replace 110, the number assigned to Vg, with 38.
Then answer the questions in Exercise 3 for these replace-
ments.

5. Try to draw a triangle such that one of its angles is a
right angle and another is an obtuse angle, Explain how
you were able to or not able to make the drawing.

6. In a certain rectangular coordinate system A; B, and C have
coordinates {(-%, 2), (1, -3) and (6, 2) respectively.

(a) What are the coordinates of A', B', C, the images of A,
B, and C, under the line reflection in the x-axis?

(b) Are A, B, C collinear? Are A', B', C' collinear?

(c) Compare AB with A'B'. Make the comparison without
finding the numbers AB and A'B and justify your answer.

(d) Compare mLABC with miZA' B' C' after measuring each angle

with a protractor. Can you make the comparison without
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using a protractor? Justify your answer.

7. Answer the gquestions in Exercise 6 if A', B', and C' are
the images of A, B, and C under the line reflection in the
y-axis.

8. Answer the questions in Exercise 6 if A', B', and ¢' are
the images of A, B, and C under the point reflection in the

origin of the coordinate system.

0

Answer the questions in Exercise 6 if A', B', and ¢ are the

images of A, B, ad C under the point reflection in P(1, 2).

10. Answer the questions in Exercise 6 if A', B', and C' are
the images of A, B, and C under the line reflection in the
line perpendicular to the x-axis and containing P(1, 2).

11. Consider the coordinate rule by which (x, y) is mapped onto
(y, x) in a rectangular coordinate system.

(a) Under this mapping what are the coordinates of the ima-
ges of (2, 0), (0, %), (-1, 2), (3, 3), (-5, -2), (0, 0)2

(b) Make a graph of the points in (a) and their images.

(¢) 1Is this mapping a line + 2nslation, a point reflectionm,
a translation, a point reflection, a translation, or none
of these? If it is one of these, describe it, giving
domain, range and the rule for its inverse mapping.

(a8, wnat is the composition of this mapping with itself?

12. Consider the coordinate rule in a rectangular coordinate
system by which (x, y) —— (~y, -x). Answer the questions
in Exercise 11 for this mapping.

13, Is the mapping with coordinate rule (x, y) ——(2x, 2y)

154
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in a rectangular coordinate system an isometry?
Let M be the midpoint of BC in AABC. Using a point
reflection in M and a translation show how to prove that

mA + miB + miC = 180.

Find the measure of an angle of an n-sided figure, where
all the angles have the same measure, and n has the value
given below:

(a) n =6 (¢) n=28 (e) n =20
(b) n=3 (d) n =12

Find the measure of an exterior angle of each n-sided
figure in Exercise 15.

In the figure below AB = AC, and DB = DC. Using a line

reflection, prove m/DAB = n/lDAC.

A

w
[a]

(WA
Lo
1



CHAPTER 11
ELEMENTARY NUMBER THEORY

11.1 (N, +) end (N, *)

Over the centuries meny discoveries hsve been masde concern-
ing properties that verious sets of numbers possess. In this
chapter we shsll concentrate on seeking out properties of certein
subsets of the whole numbers, In psrticuler we shall examine
the set of netural numbers. (By the natursl numbers, N, we mean
the whole numbers with zero deleted.)

N=1(1,2,3, ...}

We shall begin by stating certsin bssic sssumptions concerning
the natursl numbers. Such assumptions, that is statements which
we sgree to sccept es true without proof, eare cslled sxioms. We
shell use these axioms to prove other statements which we call
theorems. In fact, number theory provides us with a large source
of simple and importsnt theorems from which we can begin to learn
some of the basic ideas dzaling with "proof."

Before steting the first axiom let us recall & problem
considered in Chapter 2 (Section 2.4, Exercise 12): "Is ad-
dition an operation on the set of odd whole numbers?" It is
easy to find sn example which indicates the answer to this
question is "No." Both 3 and 5 are odd whole numbers but their
sum, 8, is not an odd whole number. Becsuse the set of odd
whole numbers is a subset of W we see thst addition is not an
operation on every subset of W. Thus any statement which as-

serts that addition is an operation on & subset of W is a

7G5
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non-trivial statement. Our first exiom (Al) states that sd-
dition is an operetion on N,

Al. (N, +) is an operational system.
Because 3€N and 5€N we can conclude, by Al, that 3 +5 = 8 € N.

In generel Al states that to each ordered »air of natural
numbers addition assigns exactly one natural number called their
sum.

An obvious question to consider next 1s the following:
"Is multiplication en operation on N?" Ovur second exiom provides
the answer to this question.

A2. (N, « ) is an operational system.
Since 3€N and 5€N we can conclude by A2 that 3.5 = 15€N. 1In
genersl, A2 states that to esch ordered pair of nstursl numbers
nultiplication essigns exactly one nstursl number called their
product,

For example:

{3,5)— - 15
We frequently express the sbove by the mathematical sentences
3.5 =15 or 3 x5=15,

Let us review some of the language used in discussing the
operational system (N, «+ ). 1In the sentence above, 3 is said to
be a factor of 15. Also, 5 is said to be a factor of 15.

Definition 1: We say that for g and b in N, & is a
factor of b if end only if there is
some naetural number ¢ such that e.c = b,

Thus 3 13 & factor of 15 because there is a naturel number, 5,
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such that 3.5 = 15, 4 is not a factor of 15 because there 1is
no. natural number ¢ such that 4.c = 15. 5 is a fsetor of 15
because 5.3 = 15.

Recall that in Chepter 2 you were introduced to the idea

of multiple. For the mathematical sentence

we say chat 15 is a multiple of 3 and glso that 15 is a multiple
of 5.
Definiticn 2: For g and b in N, b 1s a multiple of
a2 if and only if & is & factor of b.
Thus for the mathematical sentence
h-9 = 36
we can make the following statements:
4 is a factor of 36
9 is a fsctor of 36
36 is the product of the factors
4 and 9
36 i1s 2 multiple of 4
36 is a multiple of 9
In Chepter 6 we made frequent use cf the binary relation
"divides" on various sets of numbers. In this chapter we again
make use of this relation. In particular, if 4 is a factor of
36 we say that 4 divides 36 and we write
4 j 36
Definition 3: We say that for a and b in N, a divides
b if and only if a is a factor of b. We

O
J(£]{U:‘ denote "a divides b" by "a | b."
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For the sentence

3.4 = 12
We can make the following statemenis:

3 is a factor of 12

3 divides 12

3| 12

4 1s a factor of 12

4 | 12

12 is a multiple of 4, etc.
Since 5 is not a factor of 12 we can say that 5 does not divide
12 (written 5 ) 12).

Because 1:n = n where n is any natural number we see that 1
is a factor of every natural number. Also, every natural number
is a multiple of 1.

Question: Can we say that 1 | n for all n in N? Explain.

You are familiayr with the idea that every natural number
has meny names. A number such as 12 can be renamed in many ways:

10 + 2 34
1-12 62

We shall use the words product expression to talk about names

such as "1-12" and “3.4" that involve multiplication. We ssy
that "1.12" and "3.4" are product expressions of 12, It is
possible to have product expressions for 12 with more than two
factors such as:

1-2.6 2.2-3

1.3-4 1.2-.2.3

We see that we can use any of several different product expressions

199
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to represent the number 12.
Question: How many product expressions of 12 are’ there
which contain exactly two factors?
Question: Is 59:509 a product expression of 300317 (The
number 30031 will be mentioned later in this

chapter in connection with an important theorem)

11.2 Exercises

1. Explain why the following are, or are not, true:

(a) (2 +3)en

(b) (2:3) e N

(¢) If a€ Wand b €W, then (a + b) € N

(d) If x€ Nend y € N, then (x + y) € N

(e) If p€ Nand q € W, then (p-q) € N

(f) The product of two nstural numbers is a natural number.
2. Complete the following sentences:

(a) If 2 is a factor of b, then b is a __of a.

(b) If x.y = z, then is a factor of _

(¢) If p-q = r, then is a multiple of

(d) If5 | 100, then 5 is a of 100.
(e) If 78 = 56, then 56 is called the of
and
(f) If 9-7 = 63, then "9.7" is called a ____ of 63.
3. Determine if the following are or are not true. Explain

Your answers.
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(a) 3 is a factor of 18
(b) 7 is & factor of 17
(¢) 3 is a factor of 10101
(d) 12 is a factor of 96
(e) 30 is a factor of 510
(f) 1 is a factor of 3
(g) 8 is a factor of 8
(n) 65 is a multiple of 13
(1) 91 is & multiple of 17
(j) 5402 is a multiple of 11
(k) 10 is a factor of 1000 because 10-i00 = 1000
(1) 16 is a fector of 8 because 8:2 = 16
4, Determine if the following are or are not true. Explein

your answer,

(a) 31 39
(b) 17| 91
() 81 &4
(@) 1| &
(e) 13| 65
(f) 3| 6, 3| 12 and 3 | 18
(g) 2 | n where n is any even natural number
(h) n | n where n is any nstursl number
(1) n| n® + 3n for a1l n in N
5. For the following numbers determine all product expressions

which contain exactly two factors.

{a) 6 () 1

LRIC 7201 @
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(e) 13 (h) 35

(f) 2 (1) 36

(g) 3 (3) 37
11.3 Divisibility

In this section we shall cousider how some sentences
desling with netural numbers can be e2stablished as theorems. An
example of such s sentence is the following:

If g is an even natursl number and b is sn even natural
number then 8 + b is an even natural number. Our goal is to
prove that 2 + b must be an even natural number whenever g and
b are even natursl numbers. In order to prove this some sddi-
tional sxioms for (N, +, +) ere needed. Rather that just stat-

ing those axioms needed to prcve the sbove sentence, we now re-
cord 8 number of additionsl axioms for (N, +, ) which may be
used to prove meny other theorems.

A3, For #ll a end bin N, a + b = b + 8 and a:b = b-e.

A4, For 81l 8, b, end ¢ in N,

a+ (b+c)=1(a+b)+c and a.(b.c) = (a-b) -.c.
A5. For 811 g, b, end ¢ in N,
g+(b+¢c) = (a-b) + (a-c).
A6. For ell g in N, &8:1 = 1.8 = 8.’
Question: What familisr nemes do we give to the axioms
A3 - A6%?
Besides these properties of naturel numbers, we will

make frequent use of a gereral logicsel principle celled the

O
FRJCeplacement Assumption.
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The mathemetical meaning of en expression is not changed

if in this expression one name of &sn object is repleced by

another name for the ssme object.
As en illustration, consider the use of the cencellstion proper-
ty in solving the equetion 7.2 + x = 46, Another name for 46 is
(7.2 + 38.8). Thererore, using the Replacement Assumption, we
cen write

7.2+ x =17,2 + 38.8

and conclude that x = 38.8.

There are two specific ways in which the replacement sssump-
tion will be used in establishing proofs of sentences gbout the
natural numbers. These are conteined in the following theorem.

Theorem A, If g, b, ¢, end d ere natursl numbers such

that a = b and ¢ = d, then
l,. ea+c =b+d
2, a-.c = bed

Proof':

1. Cleerly, e +c =8 +c, 8Since c = d means
thet "¢" end "d" are two nemes for the same
object, we c;n replace any "c¢" by "d" without
changing the mathematicel meaning of the ex-
pression involved. Using this replacement we
have a + ¢ = a + d. Similerly, since a = b
means that "a" and "b" are names for the same
object, we can replace any "&" by "b" without

changing the mathematicel meaning of the ex~

pression involved. Therefdre, at+c¢c=Db+d.
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Note thet the two replacements were made for
the "8""sad "c¢" to the right of the "=" in
a+c =28+ c,

2. To show that a+‘¢ = b.d we proceed in a similar
menner. Certainly a<c = a.c. Replecing "c"
with "d" and "s&" with "b" to the right of the
"=" we obtain s.c = b-d.

Let us now consider how we can prove the sentence about
even rnatural numbers with which we began this section. Before
beginning the proof we note that a natural number n is defined
to be even if and only if 2 | n. Our proof proceeds ss follows,

Since g is on even natural number, we know that 2 I 3 oOr
thaet 2 is a factor of ga. By Definition 1 this means that there
is a natural number x such that a = 2:x, Similarly, since b is
an even natursl number, 2 | b end there is a natural number y
such that b = 2*y. Then, by the first part of the Theorem A,

a +b=2.x + 2.y, But 2.x + 2.y = 2.(x + y) by the Distributive

Property, A5. Hence, we may use the replacement essumption to ob-

tain @ + b = 2-(x + y). Since x € N end y € N then, by Al, (x + y)

€ N. We see that saccording to Definition 1 this means that

2} (2 +b). Hence a + b i3 an even natursl number and the proof

is complete,

We can also express the above in the following manner using
"parallel columns." Thet is, statements used in the "proof" ap-
pear in the left column and Justifications of these statements

appear in the right column.
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Theorem: If 2 | a end 2 | b, then 2 | (e + b), where g
and b are natural numbers.

Proof:

=
.

2|l aendz|b 1. Given

2. a = 2x end b = 2y where 2. Definition 1

X, ¥ €EN
g +b=2x + 2y 3. Theorem A
Y, 2x +2y = 2(x + y) 4, A5
5. a+b=2(x+y) 5. Replacement
Assumption
6. (x +y) €N 6. Al
7.2 | (2 + b) 7. Definitions 3
and 1
We call the eghove "a proof" of the theorem
If2 | aand 2 | b, then?2 | (a + ). (1)

We mean that we have shown that the conditional sentence (1) (i.e.,
a sentence of the "if p, then q@" type) is true for all values of
the variatles a and b, It is possible to generalize sentence (1)
to obtain

Ifc | aendc | b, thenc | (a + b)

where a, b, ¢ € N (2)
In order to give a proof of (2) one must show that it is true for
all natural numbers a, b, and ¢. (This will be asked for in en
exercise.)

Question: Would sentence (2) be proven as a theorem if we

proved it true for c = 3?

We have settled the question conceiging the sum of any two
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even natursl numbers. But what can be seid concerning the prod-
uct of two such numbers? A little experimentation (e.g., 2.4 = 8,
68 = 48, ete.) suggests the following theorem:

Theorem: If 2 | a end 2 | b, then 2 | (a+b), where

a and b are natural numbers,
A proof follows, Just like the one for the last theorem.
Cover up the reesons for the proof «nd see if you cen supply them
yourself. Look if you feel you have to or if you want to check

your reascns.

Proof':

1. 2] aend2 | b 1. Assumption
(or given)

2. a=2x 2nd b = 2y where 2, Definitions 3

X, y €N end 1

3. a.b = (2x)-(2y) 3, Theorem A

4, (2x)-(2y) = 2[x-(2y)] L, A4

5. ab = 2[x-(2y)] 5, Replacement

[Statement 3 & U]
6. [x-(2y)] € N 6. Statement 2 and A2
7. 2! (a-b) 7. Definition 1
Sometimes we use a single letter symbol, such as "p" or
"q" to represent a whole phrase or sentence. Thus we may write:
"Two divides & and two divides b" in the shorter fomm

"2 | a and 2 | b"
or replace this expression by the symbol "p" where
"p" mesns "2 | & and 2 | b."

Q. Similarly we could use "q" to mean "2 | a-b" or "two divides the
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prodnct of 2 by b." Thus we can represent the preceding theorem
by!
If p, then q.

We refer to "p" as the "hypothesis" and to ﬁq" as the
"conclusion."

In order to prove (3) w2 assume that p was true. That is,
we assumed that the hypothesis "2 | & and 2 | b" was true.

Then, using our axioms 2nd definitions, we proceeded to establish
that the corclusion "2 |(a-b)" was true.

The direct method of proof is one of several eccepted
methods of establishing mathematical sentences as theorems, Of-
ten the direct method is not the simplest way to prove a sentence
true. Anothe: method of proof, called the indirect method, is
useful in many instances. To illustrate the method we shall ap-
ply it to proving the following theorem.

Theorem: If a and b are natural numbers, and a'b is

an odd natursl number, then a and b are both

odd natursl numbers. (4)
(An odd natural number is any natural number

that is not even.)

Proof:

As before, we begin by assuming that a.b is an
odd natural number. But rather than using this
fect directly we now ask whether it is possible
for one of g or b to be even? To snswer this

question we consider first the possibility that
a is even. If a is even, a =2.%, X € N. Then,

Qﬁ?Y ab = (2.x):b = 2.(x.b) which means that a-b is
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even. But a-b is odd. Hence, a cannot be even.

Hence 2 must be odd. In & siwmilar fashion we

see that b cannot be even. Thereforg, both a and
b must be odd if a<b is odd, and our proof is
complete.

In order to prove (4) we assumed that the hypothesis was
true, that a:-b was odd. Then we considerea the nossibility that
the conclusion might be false, that is, that a was even or b was
even. In either case this could not be true btecause it meant
that a.b was even, We thus reasoned that the conclusion must be
true.

The above proof coacerning odd natural numbers made use of
the definition ¢f cdd natural numbers as natural numbers which are
not even. It is possible to give a more satisfactory definition of
odd numbers. For this definition we will need to review some ideas
studied in your earlier work with arithmetic. In particular re-
call that when you were asked to divide a natural number by
another natural number you frequently expressed the answer in

terms of a quotient and a remainder. Consider the folloving two

displays of work done to divide 15 by 2:

6 7
2 T 15~ 2 T15
12 14
3 1

In both displays we obtain a quotient and a remainder. On the
left we have a quotient 6 and a remainder 3, whereas on the right
we have a quotient 7 and a remainder 1. For the display on the

left we have:

15 = (6:2) + 3

<03



- 203 -

For the display on the right we have:

15 = (7.-2) + 1
In a sense we have twoc "answers" for our division problem in-
volving a quotient and a remainder. We resolve this situation
of not having a unique answer by saying that we will sccept only
that result in which the remesinder is a whole number and is less
than the divisor. Then the display on the left is unacceptable
because the remainder 3 is not less than the divisor 2. The
question of whether we can always find exactly one quotient and
exactly one remainder when a whole number is divided by a nsturel
number is answered by the folloving sxiom which is known as the

Division Algorithm.

A7. Let g be a whole number and b be a natural number.
Then there is exsctly one pair of whole numbers g
and r such that

a = (gb) +rwith0o < r<b,

Exsmple 1: Let a = 39 and b = 9. Then the division al-
gorithm (A7) guarantees that whole numbers g
end r exist such that

39 = (g-9) + rwith 0 < r < 9.
In fact if we let g = 4 and r = 3 we have
39 = (4-9) + 3 with0 <3< 9.
Moreover, the division algorithm guarantees
that q = 4 and r = 3 are the only whole num-
bers which satisfy
. 39 = {q-9) + r with 0 < r < 9.
<09
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Example 2: Consider a case where a is less than b.
If a =8 and b = 17, then
8 = (0-17) + 8
where the quotient is O and the remainder is
8. Note that the remainder is a whole number and
is less than the divisor. That is 0 < 8 < 17.
Example 3: If a whole number is divided by 2, the division
algorithm guarantees that there exists exactly
one pair of whole numbers g and r such that
a =(q+2) + r where O <y < 2,
It is clear that the only possible values of r
are 0 and 1. Thus we have
(a:2) + 0 (1)
(g-2) +1 (2)

We can use the above to give us the following:

either a

or a

Definition 4: (a) n is an even whole number if and only if
n can be expressed as n = (q-2) + 0, where

is some whole number.

s o

(b) is an odd whole number if and only if n
can be expressed as n = (q+2) + 1, where
g is some whole number.
In other words, an even whole number is twice some whole
number, while an odd whole number is one more than some even
whole number.

It is easy to establish the following:

Let E = {x | x is an even natural number]}
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and 0 = {y | ¥y is an odd natural number}.

Theorem:

(a) If a €E and b € 0, then (a + b) € 0.
(b) If 2a €0 and b € 0, then (a + b) € E.
(¢) If a € E and b € 0, then (a.b) € E,
(d) If a2 € 0 and b € 0, then (a-b) € 0.

The proof of the above will be called for in the exercises.

We conclude this discussion of odd and even natural numbers

with a theorem whose proof makes use of Definition 4 and the

sbove theorem.

It also illustrates a method of proof sometimes

called proof by cases.

11.4

Theorem:

Proof:

Question:

Exercises

If n and n + 1 are natursl numbers, then n(n + 1)

is an even natural number.

n(a + 1) = n® + n (by A5 and by definition of n2).

(1) 1f n is even, then n® is even., If n and n?
are even, then n? + n, as the sum of two
even natural numbers, is even.

(2) If n is odd, n* is odd, and if n and n® are
odd, then n® + n, as the sum of two odd natu-
ral numbers, is even.

Hence, in either case (1) or case (2), n® + n is

even, Since n(n + 1) =n® + n, n(n + 1) is even,

Why does the above proof consider only two cases?

Complete the following:

(a) a-=

{q:b) + r, 0L r<b, is called the .

(b) (x+1) - y =%y +y follows from ' .
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(¢) 7+1 =7 follows from .

(d) If x=y and p=gq, then x + p = y + q follows

from .
(e) 7 is an odd natural number because
(f) If a2 is an odd natural number, then a =
(g) If q is false implies p is false, then
(n) If Kk € N and i € N, then (k,i) € N follows from

Find all possible pairs of whole numbers g and r such that
13 = (3:q) + r. Which of these pairs are the quotient and
remainder of the division algorithm? For which case (s)
does r satisfy O < r < 37
(a) Prove if 3 | a end 3 | b, then 3 |(a + b), where

a, b, € N.
(b) Prove if ¢ | aand c | b, then c |(a + b), where

a, b, ¢ € N.
Prove if a | b and b | ¢, then a | ¢ where a, b, ¢ € N.
Prove if a | b, then a |(bc), where a, b, c € N.
Let E and O represent respectively the set of even natural
numbers and the set of odd natural numbers.
Prove: (a) If a € E and b € 0, then (a + b) € O.
a +b) € E.

(b) If a € 0 and b € 0. then

) (
(c) If a € E and b € 0, then (a*b) € E,
) (a*b) € 0

Find three odd numbers totaling 30, or else prove that no

(d) If a € 0 and b € 0, then
such odd numbers exist.
Examine each of the statements (a), (b), and (c). If the

statement is false then exhibit a counterexample. If the
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statement is true then list all the assumptions that you
need in order to complete a proof of the statement.
(a) 1If a2 | b, then a |{(b + ¢c).
(b) If a | b, then a |(be).
(¢) Ifa | (b +c) and a | b, then a | c.
In this problem we consider some tests that may be applied
to divisibility questions involving base ten. These tests
will gerierally fail when numbers are represented with nu-
merals in bases different from ten.
Assume the following is true for natural numbers a, bl,
ba’ ceos bm:

If a | bl, a | bs ...s al b end

if a | (b1 +b ot ... D + b ) then a | b -

mel
Also note that any natural numoer N can be written in the

form N = anlon + a _

N=1

10" + ..., +310° +a. 10 + a_,
2 1 O

where 852 ai, -++» 8 and n are natural numbers.

(a) Prove that a natural number is divisible by 2 if and
only if the last digit of its (base ten) numeral is
even.

(b) Note 3 | (10-1), 3 | (102-1), 3 | (102-1), ete. As-
sume 3 | (10km1) where k is any natural number. rove
a natural number is divisible by 3 if and only if the
sum of the digits of its (base ten) numeral is divi-
sible by 3. [Hint: 10K = 10¥ - 1 + 1.]

(c) Discover a decimal numeral test which indicates when a

number is divisible by:
(1) &4 (2) 5
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(3) 6 (5) 9
(+) 8 (6) 10

(d) Prove any cf the results you have discovered in (c).

11.5 Primes and Composites

It is obvious that the natursl number 8 hss more factors
than the natursal number 7. The set of factors of 8 is {1, 2,
b, 8} whereas the set of factors of 7 is {1, 7}. It is not herd
to find other natural numbers like 7 which hesve exactly two dis-
tinct numbers in their factor set. For example, 11 is such a
numtsr since the set of factors of 11 is {1, 11}. 2 is snother
natural number with precisely two numbers in its set of factors.

Such numbers as 2, 7, and 11 are cslled prime numbers. In gen-

eral, we have the following:
Definition 5: A natural number is said to be a prime num-

ber if the number has two znd only two dis-

tinct factors -- namely, 1 and the number
itself.
Example 1: 3 is a prime number since the only factors

of 3 are 1 and 3.

Exemple 2: 21 is a prime number since the only fsctors
of 31 are 1 snd 31.

Exemple 3: 91 is not a prime number becavse 91 = 7 x 13,
That 18, 91 has factors other than 1 snd 91.

Exsmple 4: 1 is not a prime number. What in the defi-
nition of prime number determines that 1 is

not a2 prime?
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We see from Example 4 that the smallest prime number is 2.
Are the multiples of 2 which are greater than 2 prime numbers?
We know that 4 is e multiple of 2. But 4 cennot be s prime num-
ber becsuse it has a factor other than 1 and itself, namely 2.
Similarly, 6, being & multiple of 2, has a factor, 2, other than
1 and 6 and thus cannot be a prime number. In general, no mul-
tiple of 2 except 2 can be a prime number. Why?

What sbout multiples of the prime number 3? Can they ever
be prime numbers? If we examine any multiple of 3 greater than 3,
say 9 or 21 or 3000, we see that every such multiple has a factor
other than 1 and itself, nemely 3. In short, there are many natu-
ral numbers which are not prime., We call numbers of this type

composite numbers. A composite number always has numbers in its

factor set besides 1 and the rumber itself. The factor set for
the composite number 9 is {1, 3, 9}.
Definition 6: A natural number 1s a composite number, if
it is not 1, and it is not a prime number.
Example 1: The netural number 51 is & composite number.
Clearly 51 is not 1. Also, 51 is not & prime
number because it has the factors 3 and 17.
We note that the fector set of 51, {1, 3, 17,
51}, has more than two elements.
Example 2: A1l multiples of 5, except 5, are composite.
That is {10, 15, 20, 25, 30 ...} consists of
composite numbers. Why?

Example 3: The naturel numbers 90, 91, 92, 93, 94, 95, 96,

245
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98, and 99 are gll composite., Check that
97 is a prime number.

From the remarks asnd examples sbove it can bLie seen that we
now have a partition (see Section 8.15) of the set of natural
numbers into three disjoint subsets. These subsets are the
following:

(1) the set consisting of 1 alone, that is (1}.

(ii) the set of prime natural numbers.

(1ii)the set of composite nstural numbers.

11.6 Exercises

1. Complete the following sentences:
(a) If & natural number is & prime number, then its factors

are .

(b) If & natursl number is not a prime number, then it is

(c) If a natural number is a prime number, then it has

elements in its set of factors.

(d) If a natural number is not a prime number, then it has

elements in its factor set.

2. List the set of factors for the fellowing natursl numbers:
(a) 10 (e) 34
(b) 13 (£) 35
() 12 (g) 36
(d) 2 () 37
3. Determine which of the numbers given in Exercise 2 are

(8) prime; PN
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5. (a) What
(b) What
6. What can
7. (a) List
(b) List
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(b) composite;

(c) bvoth prime end composite.
be seid about every multiple of & prime number
greater than that prime number?
is the greatest prime number less thaen 507
is the smallest composite numbar?
te sald sbout the product of two prime numbers?
the set of all even prime numbers.

the set of all odd prime numbers less than 20.

8. Re-examine the definition of composite number. Try to

formulate & different definition which makes use of the

term "factor" or "factor set"?

9. Find three composite numbers, each of which has

(a) 3 numbers in its factor set;

(b) 4 numbers in its factor set.

11.7 Complete Factorization

As you continue your study of the set of natural numbers

and their properties you will frequently have to examine the fac-

tors that make up the product expressions of a natural number,

What can we say about the factors that make up the product ex-

pressions of prime numbers? We have seen that

2 = 1.2
3 =1.3
5 = 1’5, etc.

By the definition of prime numbers the only factors a prime p has

2 1 and p. However, we find that every composite number can be

B N7,
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renemed as a product expression other than 1 times the number.
For example, 20 can be renemed using either of the following
product expressions:
2.10 (1)
b5 (2)
These product expressions of 20 can be shown in another way:
/2"\ /\
2 x 1o L x 5
On the left we have a tree diagram to represent (1) and on the
right a tree diagram to represent (2). It is possible to

continue eech of the above diagrams by completing another row to

indicate product expressions of 20 as follows:

A
NEAN

X 2x5 2x2 X 5§

We see that every number named in the last row of both diagreams
is a prime number. (We shall refer to such tree diagrams as

factor trees.) Moreover, the last row in both factor trees con-

tain exactly the same prime numbers. Thus, starting with either
of the product expressions (1) or (2) of 20 we obtain exactly the

same prime product expression of 20. In this case we see that 20
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hes a product expression such that each factor that makes up the
product expression is a prime number. We shall describe this

situation by saying that 20 is expressed as a product of prime

factors.

Our attention is directed to the following questions:

Can every composite number be expressed as a product of
prime factors? 1In other words, does there exist a product ex-
presslon for each composite number in which each factor is a
prime number? Furthermore, is there only one such product ex-
pression?

The following factor trees for 36 suggest that the answer

to the above questions should be "Yes."

AVANVA
ANAWARN
JINITA

We note again that the last row in each of the above factor trees
is a product expression for 36 in which each factor is a prime num-
ber. Moreover, the same set of factors appear in each product ex-
pression. Note that the order of the factors in each of the last

rows of the factor trees is different. Is this change in the or-
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der of the factors a significant change? The answer is "No."
Because multiplication is commutative and associative in (N, -),
the fact that they are arranged in different order is immaterial.
Thus, using exponents, we cen express the last row in each of the
above tree diagrams as:
2? - 3
When a composite number is expressed as a product of prime

factors, we refer to this as a complete factorization of the

given number.
The following are examples of complete factorizstions:

72 = 2+36

=2:2-18
= 2.2:2-3.3
182 = 2.01
= 2.7.13
150 = 2°75
= 2:3-25
= 2+355
Notice that when each factor in the final product expression is
a prime number then we say that the product expression for com-
plete factorization has been found.
One important gquestion that can be asked is the following:
If a composite number has a complete factorization, could it have
a second complete factorization involving different prime numbers?
All the examples considered above seen to indicate that there is

only one complete factorization for a given composite number.

o]
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For example consider:
150 = 2:3+5+5
If you experiment with other possible prime factors, such as 7,
11, 13, etc., you will find that the above is the only complete
factorization of 150,
The above examples illustrate one of the most important
and fundamental properties of the set of natursl numbers. The

property is called Unique Factorization of the Natural Numbers:

Every natural number greater than 1 is either a prime
or can be expressed as s product of primes in one and
only one way, éxcept for the order in which the feactors
occur in the product.
We shall see how this property can be used to solve, in a new
way, a problem that you met earlier in this course.
There was an exercise in Chapter 2 (see Section 2.2, Exer-
cise 12) in which you were to find the greatest common divisor

of 24 end 16. It turns out that finding the greatest common di-

visor of two natural numbers is equivalent to finding the greatest
common factor of the two numbers. We can redefine a greatest com-
mon divisor of two natural numbers using the terminology of this
chapter.
Definition 7: The greatest common divisor (abbreviated
g.c.d.) of two natural numbers, g end b, is
the largest natural number d such that d | e

end d | b, 4 is written as g.c.d. (a,b).

Pl



- 216 -

In chapter 2 you found g.c.d. (24, 16) essentially as follows:
A=1(1, 2, 3, 4, 6, 8, 12, 24}
The set of factors of 16 we will call B:
B={1, 2, 4, 8, 16}
Then
ANB-={(1, 2, 4, 8)
is the set of common factors (divisors) of 16 end 24. Clearly
8 is the grestest common divisor of 24 end 16. That is, g.c.d.
(24, 16) = 8. We see that 8 is the greatest natural number such
that 8 | 24 end 8 | 16.

Question: ‘Why will 1 always be an element in the intersec-
tion of the factor sets of two natural numbers?

A second solution to the sbove problem is as follows: By
the unique factQrization property of naturasl numbers we kriow thet
both 24 and 16 caqxgk expressed as a product of primes where the
factors of the product are unique. In fact we have 24 = 2:2:2:3
end 16 = 2°2°2°2., We see that the product expression 2:2.2 is
common to both factorizations and yields the greatest common di-
visor 8. This technique is useful when the numbers sre small.
For exsmple, to find g.c.d. (45, 108) we determine that

45 = 3%.5
end 108 = 2°.3°

3
We see that 3 = 9 is the greatest common divisor of 45 and 108.

11.8 Exercises

1. Factor the numbers listed in as many ways as possible using
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only two factors each time.

We shall say that 2°3 is not

different from 3:2 because of the commutative property of

multiplication in (N, °).

(a) 9 (e)
(b) 10 (a)
(e) o4 (g)
(f) 16 (h)
Write e complete factorization of
(a) 9 ()
(b) 10 (g)
() 15 ()
(d) 100 (1)
(e) 2k (3)

15
100
72
81

16
81
210
200
500

What factors of 72 do not appear in & complete factoriza-

tion of 727

What will be true about the complete factorization of every

(a) even natural number?

(b) odd natural number?

Construct at least two factor trees

ing:
)

(a) 24 {e
(d)

(b) 96

Find the greatest common divisor of

for each of the follow-

625
1000
the following pairs of

numbers by making use of their complete factorizetions:

(a) 70 end 90
(b) 8p end 63
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(¢) 372 and 90

() 663 and 1105
Determine if g.c.d. is a binary operation on N. If it is,
explore its properties. If it fails to be a binary opere-
tion on N, explaein why it fails.
Copy the following tsable for natural numbers ané complete

it through n = 30.

n Factors of n Number of factors Sum of factors
1 1 1 1
2 1,2 2 3
3 1,3 2 L
4 1,2,4 3 T
5 1,5 2 6
6 1,2,3,6 L 12
7 1,7 2 8
8 1,2,4,8 4 15
(2) Which numbers represented by n in the table above have

exactly two factors?
(b) Which numbers n have exsctly three factors?

(¢) If n p2 (where p is & prime number), how many factors

does n have?

(d) If n

pa (where p end g are prime numbers and not the
same), how many factors does n have? What is the sum
of its factors?

(e) If n

1]

2k (where k is a natural number), how many fac-
tors dees n have?

(f) If n = 3k (where k is a nétural number and p is a prime),
how many factors does n have?

(g) If n = p¥

how many factors does n have?

(where_g is a naturasl number and p is a prime),

s



(n) Which numbers n have 2n for the sum of their factors?

(These numbers are called perfect numbers.)

g. If we list the set of multiples of 30, we obtein (30, 60,
90, 120, 150, 180, ...}. Also, if we list the set of mul-
tiples of 45, we obtain (45, 90, 135, 180, 225, 270, ...}.
We see that & common multiple of 30 and 45 is 180.
However, there is a common multiple which is the least
common multiple of 30 and 45; namely 90. We write this
as l.c.m. (30,45) = 90

(a) Examine the complete factorizastions of 30 and Is and
explain how one could use these to find that the least
common multiple of 30 end 45 is 90.

(b) Similarly, find the least common multiples of the fol-

lowing palrs of numbers by making use of their complete

factorizations:

(1) 30 end 108 (4) 81 end 210
(2) 45 and 108 (5) 16 =nd 24
(3) 15 and 36 (6) 200 end 500

(c) Can you find any relationship between the greatest com-
mon divisor (g.c.d.) of & and b and the least common
multiple (l.c.m.) of the same g2 snd b? Experiment and

write a report on your findings.
10. Determine if l.c.m. is & binary operaticn on N. Write a re-

port of your findings.

11.9 The Sieve of Eratosthenes

The fact that every composite number can be expressed as a‘}(‘)s
. fo fe
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product of primes in one and only one way, except for order, in-
dicates that the prime numbers are the basic elements, the

stoms so to speak, in the structure of the natural numbers by
multiplication. If we wish to have a basic understanding of mul-
tiplication of natural numbers (end division, which is defined in
terms of multiplication), then it is to our advantage to be aware
of some properties of the set of prime numbers.

A list of allvthe primes up to a given natural number N may
be constructed as follows: Write down in order all the natural
numbers less than N. We have done this below for N = 52, Then
strike out 1 because by definition it is not a prime. Next,
encircle 2 because it is a prime number, Then strike out 11 re-
meining multiples of 2 in the 1list, that is, 4, 6, 8, 10, etec.
Such multiples of 2 are, as we discussed earlier, composite num-
bers.

Next encircle 3, the next number we encounter in our 1list.
After 3 is encircled, we strike out 6, 9, 12, ..., that is, 211
multiples of 3 remaining in the 1list. (Note that € was struck
out when we considered multiples of 2.) In a similar way we con-
tinue this process by next encircling 5 and striking out its re-
maining multiples. Lastly we encircle 7 and strike out its

remaining multiples.

Pa¥ie!
o2
p)
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Note that if we encircle all the numbers remaining in the
list we obtain all the prime numbers less than N = 52, In all
there are 15 such prime numbers obtained by this process, known
as the Sieve of Eratosthenes, The sieve catches all the primes
less than N in its meshes,

Complete tables of all primes less than 10,000,000 have
been computed by this method and refinements of this method.
Such tables are useful in supplying data concerning the distri-
bution and properties of the primes.

Even the small 1list constructed above gives some indication
that the primes are not distributed in any sort of obvious
way among the natural aumbers. Also, we see that it may happen
that a number, p, is a prime and p + 2 is also a prime, Such

pairs of primes are called twin primes. Examples of twin primes

in the 1ist above include 11 and 13, 17 and 19, 29 and 31, 41
and 43,

11.10 Exercises

1. (a) In the above list, what was the first number struck out

that had not previously been struck out when we sieved

22
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for the following:
(1) multiples of 2 (3) multiples of 5
(2) multiples of 3 (4) multiples of 7
(b) Can you make a conjecture concerning the first number struck
out if we sleve for multiples of a prime p?
(¢) Explain why we did not heve to sieve for multiples of the
prime 117
(d) What is true of all numbers that
(1) pass through the sieve?
(2) remain in the sieve?
(e) Would any new numbers be crossed out if we sieved for mul-
tiples of 4?2 Why or why not?
2. Make up a list of natural numbers less than 131.
(a) Carry out the Sieve of Eratosthenes process on this
set of numbers,
(b) How many primes are there less than 1017
(c) How many primes are there less than 1319
(d) What is the largest prime number in your list?
(e) What is the largest prime, p, for which you had
to determine multiples in the sleving process? Explain.
3. (a) List the pairs of prime numbers less than 100 which
have difference of 2,
(v) What name is given to such pairs?
(c) How many such pairs are there less than 1007
L, Make up & list of numbers which goes from 280 through 290.
(a) Apply the Sieve of Eratosthenes process to this list,

998
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(b) List all the primes obtained from this sieving.
(¢) For which primes did you have to seek multiples?
(d) Explain why you selected a certain prime as the
largest for which you sought multiples.
5. (a) List the triplets of prime numbers less then 131 in
which the succeeding numbers differ by 2. Such
triplets are called prime triplets.

(b) After you have found the smallest set of prime trip-
lets, explaein why no other distinct set of prime trip-
lets could have 3 as a factor of one of its numbers.

(c) Assume that there is a second set of prime triplets.
Call them p, p+ 2, p + 4. From (b) we know that
p # 3k where k is some natural number larger then 1.
Why?

(d) 1If p # 3k, then what is the remainder obtained when
p is divided by 3?

(e) Can you examine p + 2 and p + 4 and prove that p, p + 2,
end p + 4 are not all primes if p > 37

(f) What conclusion cen you draw from (a) - (e)?

21.11 On the Number of Primes

Buclid (circa 300 B.C.) answered the following question:
Is there a finite or en infinite number of prime numbers? As you
work with the sieve of Eratosthenes you probebly note that as you con-

tinue sieving the primes become relatively scarce. However,
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Euclid proved that, as one continues to examlne the set of nat-
ural numbers, primes will always be encountered if we seek long
enough. He proved that there are an infinite number of primes.

Euclid's argument proceeds as follows: Assume there is a
largest prime. Let us denote this largest prime as "P." All
the primes can then be viritten in a finite sequence

2, 3, 5, Ty «ees P,
Since P is the largest prime, all numbers greater than P must be
composite; that is, every number greater than P must be divisi-
ble by at least one of the primes in the above sequence. But
now consider the number
N = (2:3:5:7+ ....P) + 1,

that is, the number obtained by adding 1 to the product of all
the primes. Since N is greater than P, it must be a composite
number, and therefore divislible by at least one of the primes
in the above sequence. But by which? It can be argued that N
is not divisible by any of the primes 2, 3, 5, 75 ..., P, since
dividing N by any of the primes ylelds a remainder of 1. Hence
N cannot have any prime factors, which contradicts the fact that
N 1s composite. Therefore, the assumption that the number of
primes is finite leads to a contradiction, and we must conclude
that there are an infinite number of primes.

It is interesting to note that it is not known whether the
number of prime twins if finite or infinite. Unlike the situa-
tion for the primes, efforts to determine whether the number of

prime twins is finite or infinite have not proved successful.
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Another famous unsolved problem also deals with primes,
It is called Goldbach's ConJecture. Goldbach stated, in a let-
ter to Euler in 1742, that in every case that he tried he found
that any even number greater than 2 could be represented as the sum
of two primes, For example, 4 =2 +2, 6 =3 +3, 8=5 + 3,
etc, No one has yet been able to prove or dlsprove this con-
Jecture of Goldbach., The problem posed in the conjecture is
interesting because (1) it is easily stated and (2) it in-
volves addition whereas primes are defined in terms of multipli-
cation, In any case, it has resisted solution for over two hun-

dred years,

11.12 Exercises

1, Show that the following numbers all satisfy Goldbach's con-

Jjecture:
(&) 10 (£) 20
(b) 12 (g) 36
(c) 14 (h) 48
(a) 16 (1) 100
(e) 18 (J) 2ko

2. In working with Euclid's proof that the set of primes is
infinite we find that possible values of N include 2 + 1,
2¢3e+ 1, 235 4+ 1, 2357 + 1, 2¢3:5.7:1]1. + 1, 2¢35.7-
1113 + 1, 2¢3:5:7+11-13-17 + 1,

(a) Explain how each of the numbers in the above 1ist was

formed. In each case what 18 P? What is N?
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(v) The first 5 numbers in the list are primes. Compute
then and verify that at least U4 of them are in fact
primes,

(c) Note that 2°3°5°711°13 + 1 = 30031 and this number
is composite because 30031 = (59)(509). Verify this.

(d) Prove that 2.3°5°7°1113°17 + 1 is a composite number.
(Hint: Be efficient!)

(e) Discuss Euclid's argument with regard to the number
shown in (d).

(f) Explain why a computer could never settle the guestion

concerning the riumber of twin primes.

11.13 Eueclid's Algorithm

We have seen that one way to find the g.c.d. of two natural
numbers is to begin by expressing each of the numbers as a product
of prime factors. However, this is not practical when thz numbers
considered are quite large. A method which is often used to find
the g.c.d. of two large numbers is based on repeated use of the
division algorithm.

We illustrate this by considering the problem of finding
the g.c.d. of 28 and 16, By applying the division algorithm we
have

28 = (1+16) + 12 where 0 < 12 < 16,
Note that if a |(b + ¢) and a | b, then a | ¢c. Thus any number
that divides 28 and 16 must also divide 12, Thus the g.c.d.
(28, 16) must divide 12. Let g.c.d. (28, 16) = d, Then d |12
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implies d is a common divisor of 16 and 12,
Also

d = g.c.d. (16, 12)
because if there was & larger divisor of 16 and 12 it would di-
vide 28 and then d would not be g.c.d. {28, 16). Hence, we have
g.c.d. (28, 16) = g.c.d. (16, 12). We continue the process by
using the division algorithm agein to obtain

16 = (1-12) + 4 where 0 < 4 < 12
By the same argument as above we have g.c.d. (16, 12) = g.c.d.
(12, 4). Therefore, g.c.d. (28, 16) = g.c.d, (12, 4). Lastly,
we apply the division algorithm to obtain

12 = (3-4) + 0
and we see that the g.c.d. (12, 4) =4
Thus g.c.d. {28, 16) = 4,
The following exemple illustrates the algorithm indicated above:

Example: Find the g.c.d. of T469 and 2387

7469 = 23873 + 308
g.c.d, (7469, 2387) = g.c.d. (2387, 308)
2387 = 308:7 + 231
g.c.d, (2387, 308) = g.c.d. (308, 231)
308 = 2311 + 77
g.c.d, (308, 231) = g.c.d. (231, 77)
231 = 77.3 + 0
g.c.d. (231, 77) = T7

Thus g.c.d. (7469, 2387) = 77
Note that we first divide the larger number, T469, by the
smeller number, 2387, and find. the remainder 308 (which is less

233
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than the smaller number). Next we divide the smaller number by
this remainder 308 and find a new remainder 231. Now we divide the
first remainder 308 by the new remainder 231 and find the third
remainder, 77. We continue this division until we obtain a remainder
0. The last non-zero remainder thus found is the g.c.d.

The procedure of computing the g.c.d. by successive appli=-
cations of the division algorithm is known as Euclid's Algorithm.

It can happen that when we find the g.c.d. of two numbers
it turns out to be 1. For example, it is clear that
g.c.d. (5, 13) =1
and with a little work we can see that
g.c.d, (124, 23) =1
Such pairs of numbers whose g.C.d. 1is 1 play an important role

in Number Theory.

Definition 8: If the greatest common divisor of two natural
numbers a and b is 1, we say that a and b
are relatively prime.
Thus 5 and 13 are relatively prime since g.c. d. (5, 13) = 1.
Sirilarly 124 and 23 are relatively prime. We shall use the idea
of two numbers being relatively prime in our next axiom.
A8, If d = g.c.d. (a;b), then there exist integers x and
y: such that
d = x.a + y-b
In particular, if a and b are relatively prime, there

exist integers x and y such that 1 = x-a + y-«b.
6(72) + (-5)(86).

Example 1: g.c.d. (72, 86) =2 and 2
Here x = 6 and y = -5,
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Example 2: g.c.d. (7, 5) =1 and 1 = 3(7) + (-&4)(5).
Here x =3 and y = -4,
Example 3: g.c.d. (147, 130) = 1 and
1 =23 (147) + (-26)(130).
Here x = 23 and y = -26.
We will use A8 next to prove an important theorem which will en-
able us to prove a number of other theorems that tie together the
ideas of "prime" and "divisibility."
Theorem: If a | bc and g.c.d. (a,b) =1, then 2 | c.
Proof: Since g.c.d. (a,b) =1, then, by A8 there are in-
tegers x and y, such that 1 = ax + by
Since ¢ = ¢ we have by theorem A, c+1 = c.f{ax + by).
Applying A6 on the left and A5 on the right, we have:
¢ = cax + cby
By hypothesis a |bc which by A3 implies
a | cb, But a | cb implies a | cby. (Why?)
Similarly a | cax. Thus, we conclude that a | c.
(Why?)
Example 1: 7 | 70. Consider 70 as 5°14. Then we have
7 | (5-14) and g.c.d. (7,5) = 1. Hence by the
above theorem 7 | 14,
Example 2: 10 | 840. Consider 840 as 21-40. Then we have
10 | (21.40) end g.c.d. (10,21) = 1. Hence
10 | Lo.
Among the theorems that are easily established using the above

theorem are:
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(1) Let p be a prime such that p | (bc) and p Y b. Then p | c.
(2) 1f p is a prime and p |ab, then either p | aorp | b
(or both).

11.14 Exercises

1. Using the Euclidean Algorithm find the greatest common di-
visor of each of the following pairs of numbers:
(a) 1122 and 105 (¢) 220 and 315
(b) 2244 and 418 (d) 912 and 19,656
2. Find the g.c.d., (144, 104) using two different methods.
3. (a) What is the g.c.d. of & and b if a and b are distinct
primes?
(b) If a is a prime and b is a natural number such that
a | b what is the g.c.d. (a,b)?
by, Prove the following: Let p be a prime such that p | (be)
and p Y b. Then p | c.
5. Prove: If p is a prime and p | ab then either p | 2 or
p | b (or both).
6. Prove: If a and b are relatively prime and a | ¢ and b | ¢,
then ab | c.
7. Prove: If d = g.c.d. (a,b) and a = rd and b = sd, then
r and s are relatively prime.
8. Find 7 consecutive natural numbers each of which is com-
posite. Find 8. (It can be proved that there are a million
consecutive composite natural numbers; in fact, any number,

Q no matter how large.)
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9. Fermat's Little Theorem. In the year 1640 Fermat stated the

following: If p is a prime that is not & divisor of the

natural number &, then p | (aP~r -1).

(a) Find two examples which illustrate this theorem.

(b) Note that there is the restriction that p } a. What
would follow if p | a?

(c) What can we conclude if p is not & prime?

(d) Can you prove Fermat's Little Theorem?

11.15 Summary

In this chapter we have explored topics in number theory.
You have had an opportunity to make conjectures and then to prove
your conJjectures.

At this time you should be able to give a clear description

of what is meant by factor, multiple, prime number, composite num-

ber, even and odd natural numbers, greatest common divisor, least

common multiple, and complete factorization. Can you state the

Unique Factorization Property of the natural numbers? You saw

that the Sieve of Eratosthenes provides one way to determine primes
up to some number, Do you believe that this is an efficient tool
for finding primes? Can you describe several ways of finding the
g.c.d. of two natural numbers? What purpose did Euclid's Algorithm
serve and on what principle was it based? Can you state =ome
pro~2rties of prime numbers? Can you state some problems that no
one has yet been sble to solve?

Overall, your awareness of the set of natural numbers should

PAYE
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be increased. Also you should be more aware of what con-
stitutes a proof in mathematics and the fact that there are dif-

ferent methods of proving theorems.

11.16 Review Exercises

1. Explain why the following are true.
(a) 10 is a factor of 50.
(b) 30 is a multiple of 6,
(¢) 6 is a factor of 30.
(d) 6 is a factor of 6.
(e) 7 is not a factor of 30.
(f) 7 is a prime number.
(g) 6 is a composite number,
(h) 91 is a composite number.

2. Define the following terms:

(a) factor (¢) prime
(b) multiple (d) composite
3. Give a complete factorization of each of the following:
(a) 38 (c) 96
(b) 72 (a) o1
Iy, Using the data in 3 above, determine:
(a) g.c.d. (38, 72) (e) g.c.d. (72, 96)
(v) g.c.d. (38, 96) (@) g.c.d. (72, 97)
5. Using the data obtained in 3, determine:
(a) 1.c.m. (38, 72) (¢) 1l.c.m. (72, 96)
(b) 1l.c.m. (38, 96) (a) 1l.c.m. (72, 97)
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Using the Sieve of Eratosthenes, determin: all primes be-

tween 130 and 150.

(2) How many primes are in this set of numbers?

(p) How many twin primes are in this set?

(c) What is the largest prime p for which you have to de-
termine multiples to find all the primes in this set
of numbers?

Using the Euclidean algorithm check your answer for 4

(c) above.

Provet if a | b and b | ¢, then a | ¢ where a, b, c € N,

If 9 | n and 10 | n does it follow that 90 | n? Explain.

Prove if & J b where & is a prime, then g.c.d. (a,b) = 1.



CHAPTER 12

THE RATTIONAL NUMBERS

!
12.1 W, Z and Z,

In earlier chapters we studied a variety of number systems
--whole numbers, clock numbers, and integers. The operational
systems (W,+,¢), (Z9,+,+) and (Z,+,+) have several important
properties in common. In each system, + and . are associative
and commutative, °* is destributive over +, "O" represents the
identity element for +, "1" represents the identity element for
*s and for any elements & in each systema - 0 =0 + a = 0.

However, the differences among these systems are as strik-
ing as the similarities. 2+ is finite; W and Z are infinite.
The assignments made by + and -« ¢in Z, are quite different from

those made by + and ¢« in W and Z.

.LZLLiLLl (Wo+,°) and (Z,+,-)

b +3 =0 4 +3 =17
6 +6=5 6+6 =12
5+« 6=2 5+ 6 =30

In (W,+) subtraction is not an operation (What is 7 - 107),
only O has an additive inverse (0 + O = 0), and many simﬁle
equations of the type "a + x = b" have no solution (for example,

75 + x = 50). In both (Z,,+) and (2+) subtraction is an operation,
each element has an additive inverse, and all equations of the
type "a + x = b" have solutions. The integers were developed
specifically to meet these deficiencies in (W,+). 1In

(Z,+) 7 - 10 = =3, a + (=a) = 0 for every a, and the solution
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set of 75 + x = 50 is {-25}.

Extension of W to Z removed meny of the restrictions on
addition and subtraction in W, but it did not sccomplish the
same purpose with respect to mulitplication and division. 1In
both (W,*) and (Z,:) division is not an operation, (What is
7 + 10?), only 1 and -1 have multiplicative inverses (1 - 1 =1
= (-1)(-1)), and many simple equations of the form "a + x = b"
have no solution (for exsmple, 75 * x = 50).

These limitations of mulitplication and division do not

hold in (Z,,-).
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In Z, division is almost always possible. For example,

6 +2=3sgince3.2=6;5+2=6since 6 + 2=5; 3 +5 =2
since 2 * 5 = 3., Only division by zero is not possible. If
3+0=m then3=m . 0 =0, Clearly, 3 # 0; so there is no
number m in 2, for which 3 + 0 = m,

In (Zy,*) every element -- except O, of course -- has a
multiplicative inverse. The multiplicative inverse of 2 (which
was written "%" in Chapter one) is 4, since 4 * 2 = 1 in (Z,,*).
Similarly% =5 since 5 - 3=11n (Z,.); =2 since 2 - 4 = 1
in (Zy,¢); % =3 since 3 °* 5 =1 1in (Zy,*); and %-= 6 since
6«6 =11in (Zy,*).
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In (Z,,°) any equation of the form "a - X = b" has a solu-
tion, if a # 0. For example, the solution set of 5 « x = 1 is
{3) since 5 - 3 =1 in (Z»,-). The solution set of "5 - x = 2"
is {6) since 5 - 6 = 2 in (Zy,-). In Chapter'one this last
solution set was also written [%}. % =2 +5 = 6 because
6 *5=21in (Zy,-).

The fact that (Zs,+,-) apparently has all the good prop-
erties of (W,+,-) and (Z,+,-) and none of the deficiencies
makes it more desirable from a mathematical point of view. How-
ever Z, has its own peculiar drawbacks. For example, such a
simple but important process as counting elements in a set is
severely limited if (0,1,2,3,4,5,6)} is all that is available.

It is impossible to use Z, for ordering sets into first, second,
third, fourth,... ; what comes after the sixth in Z,?

. There is a broader class of practical problems for which
none of Z¢, W, Z is adequate.

Example 1: What is the probability that a fair coin will

turn up "heads" when tossed?

Example 2: A board to be used for a 5 shelf bookcase is

14 feet long. How long should each shelf be?
Example 3: An architect's drawing of a bullding uses a
scale of 1 inch equals 4 feet. How long should
a line segment on the drawing be if the segment
represents sn actual length of 15 feet?
These problems will never be solved using (Z,,+,-) as a mathe-
matical model., Certainly the elements of Z, cannot be used to

measure lengths, for there are a large number of lengths in
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feet such as 8 feet, 25 feet, etc. that cannot be given by ele-
ments of 2,. Of course, as we have seen, (Z,+,.) and (W,+,-)
aren't much help either. The three situations mentioned call

for solutions of the equations

il

(1) 2« x=1
(2) 5 - x = 14
(3) 4-x=15

which do not have integer solutions,

What is needed is an extension of (Z,+,-). In this extend-
ed number system (1), (2), (3), and all other equations of the
type "a * x = b," with a # 0 should have solutions.

We shall now begin the construction of such an extension.
That is, we shall construct a number system (Q,+,-) such that
Z ¢« Q and such that the following properties hold for (Q,+,:):

(1) Addition and multiplication zre associative and

commutative.

(2) The distributive law holds for multiplication over

addition.

(3) O and 1 are the identity elements for addition and

multiplication, respectively.

(4) Every element has an inverse under addition.

(5) Subtraction is an operation.

Furthermore, we want (Q,+,-) to have the following properties:

(6) Every equation "ax = b" where a £ Q and b € Q and

a # 0 has a solution in Q.

(7) Every member of Q (except 0) has a muitiplicative in-

verse.

(8) Division (except by 0) is always possible.
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12.2 Reciprocals of the Integers

The whole numbers were extended to the integers by uniting
{(0,1,2,3,...) and a new set {-1,-2,-3,-4,...)} containing additive
inverses for each non-zZero whole number. This suggests that if

. . . 11 1 1 1 1
the integers are combined with a new set Z' = {7, 7, 5 _5» 343

%,_%,...} where % (read: "1 over a") is the multiplicative in-
verse of integer a, where a # O, the problems of division, multi-
plicative inverse, and equations "a - x = b" would be solved.

How should addition and multiplication be defined in this
new set Z 1) Z'? Clearly, if a and b are integers the product
a ¢+ b should be computed as it is in (Z,°). Furthermore, if the

multiplication properties of O and 1 are to hold in Z U Z°',

.1 1.1 1y 1.1
0] = 0O and 1 = & for all 7 in Z'. Thus 1 3 = 3

.1 _ 1 1 . 1. .
1 7 =7 and O '-? = 0, Since Z is the multiplicative inverse

= 1 for all a {except C) in 7. For example,

(o]

L)
o

)
o |

1 and -6 -;% = 1.

(&)
L]
U]
I

1
a

Question: What is % - 07 % - 17 + a? Can you explain

your answer?
What element of Z U Z' should be assigned as the product

1 and Lo o L oang Lo 1 1, c 1
of 5 and 3 of 5 and 37 of 5 end 37 We know that 2 * 5 =1

end 3 * % = 1, Therefore,

1-1=(2-36-3)=1

Since multiplication in Z U Z' should be commutative and

associative,
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= (2+3)(3 - 3.

Thus the product % . % must be the multiplicative inverse of the
e 1

product 2 « 3 = 6, Therefore % . %-= T3
The fact that

1= (-2 +3)(3 " 3)
= (233" %
=6+ (33
implies that (~% . %) = _% = ;g;¥‘§~ Similarly, -% '-% - % -

1 _ 1
e But what element

|

T:QT%:gT and, in general,

of Z U Z' is assigned as the product of a and %? For example, what

is 53102 U 2'? What is 7 + (§)? Wnat is (=3)(_5)?

The number assigned as the product of 5 and % must be a
solution of the equation "3 * x = 5," since

3+(5-3)=3"(3"-5)

Il

(3 - 3) *5

=1 +5

=5,
But "3 ¢ x = 5" has no integer solution, and there is no
multiplicative inverse of an integer which satisfies thils equation.
Therefore it does not seem possible to make (Z U Z'y+) into an
operational system which retains the structure and properties of

(Z,+,+). Our hope of obtaining an extension of Z that has the

ljRjkj :3453
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8 properties listed at the end of Section 12.1, simply by append-
ing a set of multiplicative inverses to Z was in vain. Another
extension must be made, from Z U Z' to a new set Q.

12.3 Exercises

Exercises 1 - 7 refer to (Z,,°*).

1. If possible, give another name for:
(2) 3 (@) &
(®) 3 (e) %
(c) 7 (£) &
2. Compute:
(2) 33 (e) 6 &
(®) 5° 3 (£) 63
(c) 4- 3 (&) 2° 3
(a) 4 -2 (h) 2 - %

3. It (2,,°) % =a+b=c¢ if and only if a = ¢ * b, For

example, % =3 + U4 = 6 because 3 =6 * 4,

Compute:
(2) 3 () 2
(®) 3 (£) §
(c) % () %
(a) 2 (n) 2
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4, Solve:
(a) 2x =3 (e) 5x =6
(b) 3x =5 (f) 3x =6
(c) 2x =4 (g) 3x =2
(d) 5x =4 (h) 5x =2
5. Solve:
(a) 2x =1 (d) 5x =1
(b) 3x =1 (e) 6x =1
() 4x =1 (f) ox =1
6. Compare your answers to Exercises 2, 3 and 4 and explain

the pattern that you notice.
T Compare your answers to Exercises 1 and 5 and explain the
pattern that you notice.
Exercises 8 - 12 refer to (Z U Z',*)
8, In (ZU Z',+) the number x is a multiplicative inverse of
y if x - y = 1. Find, if possible, a multiplicative inverse

of each of the following elements of Z U Z°'.

(a) -7 (e) ©
(6) 13 (£) 1
() 17 (8) =18
(@) =T (h) -1
9. Compute:

(a) (204)(-1)

(®) (-8) - (13)

() (52) + (-2)

() (&) - (-26)
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(e) (-13) - (8)
0 &3
(8) = =

() -5

(1) 3

3 5=

(6) (3 +8) =5
(1) 5+ (= =5
(m) (=55 =3
n) (=) " =
() =§ - (£ =)

10, In (Z,°) 12 =43 =3--4=6+2=2:+6=12"+1=1

1+ 12 = (=4)(-3) = ...
Write each of the following integers in three ways as
products of integers.
(a) 9
(v) 75
(e) -15
1 1 1 1,

1. 1. L

H. =323 =
following elements of

(2)

(b)

1'!‘—-—.—.]_'0-»-]-'-
5 3= =3 - Write each of the
Z

U Z' in three ways as products,

S Rl
Y PO

9 () —&

948
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Although 1 and -1 have multiplicative inverses 1 and -1

respectively in 2, it is convenient to consider them as

elements of Z', the set of inverses of integers. Thus
1 = % and -1 = %% .

Compute:

(a) 31 (&) = ' 3

() o1 () = o

(¢) T = (8) = ° =%

(d) T % (h) 7+ =¢

For each of the following equations,

give the solution in

the set Z of integers,

(a) x +4 =6 (g) 15 +x=25

(b) x+4 =1 (n) 15 + x = ~25

(¢) 312 + x = 298 (1) -330 + x = U5

(d) 500 + x = -6 (3) -330 + x = -45

(e) 6 +x=0 (k) -20 + x = =100

(f) x + 2000 = 0 (1) x + 1,215,687 = 1,200,347
For each of the following equations, list the set of
integers which are solutions. If this set is empty,
(a) -3 « x.= =21 (g) 0 « x = =2

(b) -3 -x= 21 (n) 88x = 8800

(¢) =3 *x= 20 (1) 88x = -8800
(d) x 5= 15 (3) L67x = 1ko1
(e) x * 5 =102 (k) -12x = 144

249

say so.



- 244 -

(f) 4 *x=0 (1) 1367 = -Tx
15. Give an integer for each of the quotients below. If

there is no integer, say so.

(a) -21 + -3 (€) b2 + 1t
(b) 21 + -3 (h) -2313 + -9
(c) 20 + =3 (1) =-1000 + 2000
(d) -50 + 5 (j) 2103 + (-3)
(e) 0 =+ -4 (k) 27,521 + -13
(f) 1+ 84
16. In (Z,+,°), how many solutions are there for the equation
"o ¢+ x =0"?
17. If division is defined in (Z',*) by % + % = % if % = % . %,
can you find % + % in Z'?° Can you find any quotients in 2'?

12.4 Extending Z U Z' to Q

Extension of Z to Z U Z' removed one limitation of Z; each
number in Z U Z2' (except O) has a multiplicative inverse. How-
ever equations such as "5x = 3" have no solutions in Z U Z', and

multiplication is not even an operation in Z U Z' (what is 3 - %

in Z U 2'?). Can Z U Z' be extended to a number system without
these restrictions?

The system Q which meets the above requirements must con-

tain Z = {0,1,~1,2,-2,3,3,...) and Z' = {%, :%, 12L-, _—%, %, :%,...].

We have already shown how to assign products to (a2,b) for g and

b in Z, and to (%,%), for % and % in Z2', @Q must olso contain

numbers which can be assigned as products for pairs (b,%) of
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elements in Z U Z'., Recall from Chapter 2 that for - to be an
operation on Q@ it must assign exactly one element of Q@ to each
pair of elements of Q.

Question: How shall we assign exactly one element of Q

to each pair (b,%) of elements of Q%

If we agree to indicate the product b - % by "g" (read: "o
over a"), then Q must contain 2 - % = %, =T % = -%, -6 - -T% =

;f%, and so on. The equation 5x = -3 has a solution -% in

@ because
R R
5+ §=5"(3"3%)
= - * .l
= -3,

Question: Why don't we worry about pairs (%,b)?
Question: What is the solution set in Q of "lUx = 3"?

The natural answer to this question is {%} since

K3) =4+ (3-3)

=3 - (4. E)
= 3,
But what sabout g, the product of 6 and %?

WG =4 (63
= (4 - 6) - %
=(3 - 8) - %
=3 (8§
= 3.

Q 251
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What about T%’ the product of 9 and T%?

bt (32) =4 (9 ¢ 3)
(% - 9)(5p)

(3 + 12)(13)

= 3.

In a similar way you can check that %%, %%, %%, g%, cess %%, e

are all solutions of the same equation. Do these represent
different elements of Q? If so, the equation U4x = 3 has an
infinite number of solutions--not a desirable state of affairs.
(Why not?) 1If a and b are two different solutions of Ux = 3
then l4a = 3 and 4b = 3, and so U4a = 4b and a # b. Thus the
cancellation property, so useful in Z, would not carry over to Q.
Actually the situation is much simpler than it appears.

[HE-N 1} gttt n nn it n it
% ’ g, T%’ %%, cees %% s .oe all represent the same element
of Q. In other words, the pairs (3,%), (6,%), (9’T%)’ (12:1%): oo

are all assigned the same product in Q. This is easy to show.

For instance,

6-5=0- -2 %
-3-(2-91 3
=311 -3
-3.}




- 247 -

6 3 l|6ll Il3ll
Therefore BT or B and iy name the same number in Q.

Similarly-Tg = %, since

9-.9.
% =9

The fact that single element of Q has an infinite number
of names should not be shocking: %, g, -1-2, %%, oo are all

products of elements in Z U Z'. 1In (Z,°) many pairs of integers
are assigned the same integer as a product. For example, 12 =

4y - 3,12=6+2, 12 = (-6)(-2), and so on. In (Z,+) each
integer can be obtained as a sum in an infinite number of ways.
For example: 12 = 10 + 2, 12 =11 + 1, 12 =12 + 0, 12 = 13 + (-1),
12 = 14 + (-2), and so on.

Looking again at the equation "i4x = 3," try 5% as a solution,
b () =4 (3 )
= (4 -3) - o
=(3---l+'.)--_-llr
=3 (- 3
=3
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Next try fg, -2 2£,... . Following the procedure illustrated

you will find that these products also satisfy the equation.
The reason is quite simple,.

-3 .3 (-1
(-1

(3 (-1) * (f * =)

=3'%

-3
=z .

The pairs (3,%) and (-3,:%), (-6,:%), 09,37%0,... are all

assigned the same product in Q.
The investigation of 3 - % and 4x = 3 can be repeated with
1

any other product a ° ) and the corresponding equation bx = a,

For instance, the pairs
(2:%‘)9 ('2:3];): (4:%): ('usé)noo: (21’1,%5),-..

are all assigned the same product in Q. In other words,

2 _ =2 _4 _-4_ _on
I JFTE BT T 3n

Reasoning as above, you should be able to convince yourself that

%::@::%::?’E=:% ooo=:"§%QOO,

and

9 _ -9 _18 _-18 _ _ 5n

= e I e I eeemme— 32

10 =10 20 =20 *** " 10n °*°*° °
The element of Q assigned as the product of the pair (a,%) is

also assigned as the product of (na,H%), where n is any integer

xcept 0). In other words, this element of Q@ can be named in an

Q infinite number of ways!

954



2" Ilill Heall ll_2all llnall
P’ v’ Z2vb°* 2b’ *°°°? nb ",

The elements of Q -- including integers, inverse of integers,
and products ~- are called rational numbers. The names of these

mn
rational numbers % are called fractions, each rational number

having many fraction names. In the fraction “%ﬂ "a" is called

the numerator and "b" the denominator.

When two fractions name the same rational number they are

célled equivalent fractions. For example g and :i% are equiva-

lent fractions, as are :%-and :%, as are :%-and :% . It is
easy to verify the following test for equivalence of fractions.

a c
Let b =0, d = 0. Then the fractions 5 and I are equiva-

l¢gat if, and only if, ad = be.

Question: 1Is equivalence of fractions an equivalence

relation?
Because "3" "-3" "6" and "12" all name the same rational
s> k- B> 16
number, when we say "the rational number %" or "the rational
number~g" or 'the rational number f% " we refer to the same ele-
aent of Q.

ittt
One of these fractional names, % s 1s the simplest and

-]
most commonly used. % represents the product of the pair

(3,%); the integers 3 and 4 have no common factor other than 1.
1ngzn

On the other hand, g represents the product of the pair

(6,%): But the integers 6 and 8 have a common factor, 2:

209
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od
I
:l

|
~~
n
*®
w
S
o~
o
o
He
S

= (233G 3
=1 (3

23

- I

" "
In a similar manner %% can be simplified because 12 and i6

1E-R1}
have a common factor, 4. T is called an irreducible fraction.

et
(Note: It is the fraction % which is irreducible, not the

rational number %2)

ey 1t
Example 1: % = %% = E%% s but % is the irreducible

fraction.

1} n
Example 2: 2 =2 =2, put 2 4s the irreducible
——— 9 " =3 3F 3

" -2 "
fraction (not = ).

" L}
= :% = :%%, but :% is the irreducible

Example 3:

fraction (preferred for reasons of convenience

over ":%").

. _2_h € _ =2 a2
Example 4: 2 = T =3 =% =T * but we agree to take 7

as the irreducible fraction. Similarly, we

will agree that :%, -%: 1% are irreducible

fractions, not -2, 1 or -1.

g0H
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The set of rational numbers, @, promises to be the extension
of Z required to solve equations "a * x = b" and make division

an operation. These questions are examined in Section 12,6,

12,5 Exercises:

1, Write four other fraction names for each of the following

rational numbers:

(2) %
(0) %
(c) :%
(a) 1% i
(e) %

2. Find a solution in (Q,-) for each of the following open

sentences, Write each answer as an irreducible fraction.

() 5 x=14
() -7+ x=1
(e) 16 * x = -8
(¢ 6 * x = -1
(e) 5°-x=2

(f) 10 x=14
(g) -15 * x = -6
(h) 25 * x =10
3. For each of the following rational numbers, write an

equation for which it is a solution.
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(a) & (@) =%
(0) 5 (e) =%
() % (£) %

Determine which of the following statements are true.
Then use procedures similar to those of Section 12.4 to

check your answer,

o 53

(v) 3 =32

(c) 2 =2

(@) 2-=3 (Hint: = = -1 = 33)
(e) #=22

Rational numbers, as well as whole numbers and integers,
can be represented on a number line. For instance, % is

located as indicated,

because 3 %-= 1. Similarly, % is located as indicated

0 % 1 . 2 _
\—"‘\/‘———/\—""\/———/W "
2 2 2
3 3 3
. 2
because 3 T = 2
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(a) Draw similar number lines to illustrate the locations

of:

(1) (&)

(2) (5)

(o] o B S L
odnv odw Fw

(3) (6)

(b) Draw three parsllel number lines and scale them by

tracing the scales on the following lines.

9 ) 1 2

. . -~ . —
o . ) ) ) ) 1 . ) - 2__
N S -

Locate %, %, and g-on lines &, b, and ¢ respectively and
2."

]

show why each is a solution of "3 « x

12.6 (Q,°)

Is the new system (Q,*) an operational system? If p and
q are any elements of Q, is there a unique element r of Q
assigned as the product of p and q? Remember Q consists of the
integers, the multiplicafive inverses of &ll integers except 0,
and the products a - %, where a and b are integers and b # O.

If p and g are both integers, for example 17 and =12, the
product (17)(-12) = -204 is an integer and in Q. If p and q are

inverses of integers, for example :% and % s> the product

i
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(:%)(%) = 35% is the inverse of an integer and in Q. If p is
en integer and gq the inverse of an integer, for example -9 and

%, the product is (-9) - (%) = :%: again an element of Q.

But what if p = :% and q = %?’ How 1s a product assigned to

(p,a)? Is p * q an element of Q%

(:%) . (%) = [T - (-_—;13)] - [2 . %-]
= (1 2)(z - %)
= (14) (7)
_ 14
Uy
:%% is an element of Q. In general:
grg=(a-ple-g (1)
=(a=c)(g "3 (2)
= (2 * ¢)(g=yg) (3)
a *° ¢c
I (4)

It is important to recognize several assumptions that allow

deduction of the computational rule % . % = %;é-% . (1) is true

by definition -~ % =8 ° %~and % = C °-% . The derivation of

(2) from (1) is made possible by the assumption that ° is both

commutative and associative,
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(a - %)(c . %) = [a * (% *c)] - %- Assoc.
- (c* )% Comm.,
= (a ° c)(% . %) Assoc.
(3) follows logically from (2) since %--<% = B—%—a (see Section
12.2). (4) follows from (3) because x °* % = % for any integers

x and y. Thus the rules for computing products in Q are a direct

consequernice of our definitions, or multiplicstion in Z, and of

the properties of (Z,+) that we want to hold in (Q,-) as well,
Study the following examples of computations in (Q,*).

W §z-bz-1
@) 3. 3= -
(3) 38+ 3 -3 {3) -5

Question: What are the irreducible fraction names

7 -ho 5k,
for 16’ I8° _3-8

The next important question: Does each equation of the form
"g ¢« x = b" have a solution in @ (a,b € Z,a # 0)? Study the

following examples.

Equation Solution Set

3-x=2 ()
-7+ x=5 (:;J
-11 * x = -13 {E—i—%}

261
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These examples, and your previous experience with equations,

should convince you that any equation "a + x = b" (where a ¥ 0)

has a solution, %, in Q. Furthermore, every rational number is
the solution of some such equation. Therefore, a ratioral number
can be described as the solution of equation "a « x = b," wheve
a and b are integers and a # O.

The following exercises give practice computing in (Q,°),
and suggest important properties of this operational system.
The question of whether division is an operation in (Q,*) 1is
taken up in Section 12.10.

12.7 Exercises

1. Compute in (Q,*). Give your answer as an irreducible
fraction.
(2) -3 (¢) §° 5
() £33 () 22
(c) % . % (g) %" %%
(d):-g-'—_—%% (h) B -3

2.  We know that 3 = 2 . Istheproduct%-%=1§-§-?

Mt n " "t
It should be, since % and Ig are only different names

‘for the same rational number,

3 3 .2_ .—.9. . _2_.
(a) Compute T 3 and 15 3 and express your answers as
o irreducible fractions.




_257..

(b) Do your answers in (a) agree?

(e) Compute and express as irreducibie fractions.

(1) g-3endgg- 3

(3) '}12 %% and l% . %
) 2-genaid g
(5) %-' % end % . %
(d) Do your results in (c) confirm or deny the statement:
if % = % and %: =~%: then % : g: = g : g: ?

3. Find the following products of rational numbers.

(2) 25 (0 §-2 ) G2 %
() &3 () 2% 1 - &P
©OBE wiE @ g@d
(@) 238 (1) 24 () g+ G-
(e) 13- (1) § () G2 -3
I, Find each of the following products.
() 5+ 2 (e) 78 (1) -2 -3
(®) $-% (£) 1-32 (5) 2.3
(¢) 36 (€) 155 (k) (-4)(-6)
@3¢  ®X-3  owa-R

« ‘3
O 2.()
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Determine the following products of rational numbers.

(2) 3.2 (@) -3
() 37 (e) 1666 * 2
() 2-% (£) g3

Determine the following products. Use an irreducible

fraction to represent each product.

() §-3 () 2%+ 16
® 31 0 33

) 23 (6) 2 -2
@ %3 o %R

Below are a number of equations, each of which has a solution

which is a rational number. For each equation, write the
irreducible fraction which represents the solution. Then
write four other fractions for the number.

() 7+ x=5

(
(b) 15 * x = 10 (f) 10 - x=14
(¢) 4+ x=1 (g) -3 +x=2
() W0 *x=1 (h) 3 « x = -2
(i) b *x=2a (b £0)

- 8 _ 104 , .
Is it true that T = I3’ If you are patient you will

discover that 104 and 143 have 13 as a common factor. Thus

%%% = T%—;—%% = T% . It often easier to check such state-

ments using the following rule:
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%=%if and only if ad = be.

(a) Check this rule with the known statements:

1) 5-3
) 3 -z
(3) -1

(b) Using this rule determine which of the following

statements are true.

(1) 23 - 199 (6) 3=22
(8) 22=3 (1) "g=3
(3) 2-1 (8) -2
(5 2=3 (9) 5=1%
(5) o2 = &2 (10 F=1

12.8 Properties of (Q,"°)

As with all operational systems, it is worthwhile to
investigate the properties of (Q,*). As was illustrated in
Exercise 3 of Section 12,7, multiplication of rational numbers
is both commutative and associative.

Commutative Property of (Q,*)

If % and % are rational numbers, then
a
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Associative Property of (Q,°)

If P) and-% are rational numbers, then

alo

3

oo

a L] _c_ Ll g‘ —3 ﬂ Ll E Ll g
(E d) f b (d f)'

I you refer to Exercise 5 of Section 12.7, you should see

that there is an identity element in (Q,*). This identity ele-

ment is the rational number 1, also named by the following

fractions: “%," "%, " “%:u "E%’" "33-,"... .
Example 1: % . §.= g
4
Example 2: % . g = %%
¥

Examples 1 and 2 are really the same rational number products.

In both cases, the rational number % was multiplied by the same

rational number; the only difference is that in the first example

the fraction % was used to represent the numver, while in the

He ot
second example the fraction %- was used. In both cases the
ittt et
product was %-since the fractions % and % represent the
identity element, 1, of (Q,-).

Identity Element of (Q,°)

- a.,1l_a

It 3 is a rational number, then 5 ' F¥=%° that is,
8 -2
5" 1%

What is the product of %—and %-? It is easy to check that

QO  the product is 1or 1, the identity element of (Q,+); therefore,

1
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these rational numbers are inverses of each other in this system.

If you refer to Exercise 6 of Section 12.7 you should notice a

pattern -- the inverse of % is % . There is one important
exception to this rule however. The product of %-and another
rational number cannot be 1.

Note that g names the same rational number as % as does

0

o for any non-zero integer n.

Question: If % is any rational number, whet is the product

% . %? Do you see then why % has no inverse in
(Q,*)?
We now state the following property:
Inverse Property of (Q,-)

If %-is a rational number which is not % (thet is, a # 0),

b p & a b _
then a-is the inverse of B’ that is 5 ‘a8 = 1.

b

Thus, tbc rational numbers % and — are inverses in (Q,y+).

Because the operation in this system is multiplicatlion, we may

call them xultiplicative inverses. It is also common in the

system (Q,*) to call a multiplicative inverse & reciprocal.
Example 3: The multiplicative inverse of the number

2 3 2 3
B-is 5 or the reciprocel of T is 5. Eech

of 5, %-is the reciprocal of the other.
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12.9 Exerc?ses

1. For each of the following equations, find a solution in
(Qs')-

() §-2-% (&) £-m-1
(b)%-a=1 (£ 20 - a-=-1
(C) _]%- .ig.:x (g) !'%-x=!'-%
(d) % ¢« X = % (h) x°* x=1
2. Determine each of the following products:
0.2 .4
(0) 2-% (@) o -2
(b)%-o (e)ig-i%
() 5-¢ (£) -1
3. The rational number 0 is represented by any one of the

fractions in the set

{ 1] o n " O,ll IIO.,II IIO, n llo i }
LN K] ':2" I 1 g '3', o0 0 §o

On the basis of the products in Problem 2, how would you
describe the behavior of this number in multiplication?
4, (a) List 10 fractions which name the identity element in
(Q,°).
(b) List 10 fractions which name the inverse of % in (Q,-°).
(c) What is the product of 3— and %?

(d) What rational number is its own inverse in the

system (Q,¢)?
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(e) What‘rational number has no inverse in the system
(Q,°)?
5. (a) Write the properties which a system (S,*) must nave
in order to be & group. (See Chapter 2, Section 2.15.)
(b) Is (2,¢) a group? If so, is it commutative?
(¢) Is (Q,°) a group? If so, it it commutative?
(d) L t X be the set of all rational numbers except O.
Is (X,) a group? If so, is it commutative?
6. (a) Compute the following products in (Z,*):
-8-+1, 14 -1, -234.1, 55 -1, 86 - 0, -14 - C.
(b) Compute the following products in (Q,-):

8.1, 1.1, 23 .1, 55.1,8.0, k.0
T'ICT I TIOY T TI

7. Often a short cut can be used in finding the product of
two rational numbers. Perhaps yocu have used this short
cut before, but have never been able to explain why it
works.

Study the following example:

2 . _2 " % - 2 - 5 - 2 5 = 2 . g =

? %— . e \ & o ?:03) 2- hd %
This i8 not a short cut! But notice that since %-is the

identity element for multiplication, we could have deter-
mined the product this way:

%303
3
Do you see how the identity element for multiplication

has been used in the following example?
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% $_ 6

55 1.~ 25
Use this short cut in finding the following products:
(2) ¥ 1 (£) 3+ & . 5D
() §-1 (&) 3 -3
() 1.2 m) G- -3
SRA IERRNE.
() - % () E-2-§-3-%

12.10 Division of Rational Numbers

In (Z,°), the equation
12 + 3 =x
has the solution 4, because 4 - 3 = 12, That is, division is
defined in terms of multiplication. We define division in this
way also in (Q,°).
Definition: If a and b are rational numbers then

b+a=x1if and onilly if x * a = b,
3.2

Suppose we want to find gt 5 - We must then find a
rational number -;5 such that
2.2 _ X
F*5=5

Is there a solution? If there is, we want the following to be

true:
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Now th2 reciprocal of g is g, and we know that

5 2 _1
205 10
therefore,

3 (§ 2) -3

uo 205 ao
Using the associative property of multiplication, we can write

2
(gtg)05=3o

Do you see that we have found the number 3 which we were trying

to find? It is the product % . g, which is the rational number

15

g

So, % . g is the soluticn of g + g = ; . In other words,
3 2 _ 3 5
E*5°n-5"

From this example, it would seem that the quotient of two
rational numbers can be found by finding the product of two
rational numbers.

See if you can follow the steps in the following example:

T
1+3°5
x 3_4%
y "2 3

Now, o 3 1
5-5°=1

So, L (2 3) _ 4
3°\3°-3/ "3
L 2y 3 _ L4
(3.3 .33
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g is g
and that is the number $ which we were seeking. Therefore,

So we have found the rational number whose product with

g + % = % . g (which of course is g).

Thus, to divide by g, you multiply by the reciprocal of g .

And if you look at the first example again, you see the same
pattern there: to divide by g, you multiply by the reciproceal
of g.

Finally, let g and 8 be two rational numbers (c # 0).

1 % * 3 = §: then ; . % -2,
But we know (% . g) . 3 - % . (Wnhy? Can you supply the missing
SO§=% ) g. That is, step?)

a ¢ a d

B+a=5'6-

Can you complete the following sentence?
Dividing by the rational number 3 is equivalent to multi-

plying .

You will recall that in Section 12.6, a rational number E
was described as the solution of an equation ax = b where a € Z,
b €Z and a # 0. Now let us consider an equation of this type
where g and b are in Q, and a # 0. One might be tempted to
think that in this case some kind of new number might be called
for as a solution. But this is not the case, Consider the

equation
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2 2

3575
If you examine the definition of division carefully you will
see that the rational number X must be the quotient of % and
£ . That is,
Hence, X = % . g = %g = % .
Checking this result, § . 3 = %8 = % .

Thus the rational number %

is a consequence of the properties of (Q, +,

tion of division in (Q, -) that every equation "5 . X=3

g € q, g € Q and 3 # 0 has the solution g .z

1s a solution to this equation.

It

.) and the defini-

a Cn With

o in Q.

These results now make it possible for us to interpret

any rational number g not only as a solution of an equation

aXx = b where 2 € Z, b € Z and a # 0,
of two integers. That is, as b + a.
In fact, the use of the capitel
rational numbers comes from the fact
a quotient of integers.
Consider the rational number %.
the equation "6x = 5."

6 and 5 are also in Q, 5 + 6 is also

That is, 2 =5+ 5,

but also as the quotient

letter "Q" to denote the

that a rational number is

This is the solution of

But by what we hawve said above, since

a solution for this equation.

Several conssquences of this relationship are illustrated

273
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in the following examples.
Example 1. % =0+ 1 =0, 8ince 0 - 1 = 0.

In general, if b € Z end b #0, 2= 0 + b = 0,

since O * b = 0.

Example 2. :% = -6+ 1

-6, since (~6) « 1 = -6,
In general, if a € Z, ? =a+1=a, since

g+« 1 =a,

Exemple 3. 5%% = -13 + =13 = 1 since 1 - (-13) = -13.
In general, if a € Z and a # 0, 2 =a+a-=1,

since 1 - a = a,.

12,11 Exercises

1. Find the following quotients of rational numbers. Then

use a product to show that your result is correct,.

(=) §+3 () 3+3
(b) % + % (e) i% ¥ I%
() +5 (6) i+ o
2. Find the following quotients of rational numbers.
(2) %43 (&) §+3
o 58 W 43
() §+8 (1) (G+3) +%
(@) §+2 (3) 3+ G +%
() ¢+ 3 ) J+G+3
(£) g + 3 974 (1) (§+ 3+ 5
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3. Find the following quotients:

(a) 62 (£) 5+5
() 2+ 5 () 3+3
(c) l% + % (h) 4+ 8

(d) 20 + 5 (1) £+ 8

© %03
4, Determine a rational number solution of each of the following

equations,

(b) I3E$=% (e) 99--§=%
SR SRR R
@ 7753 SE A
() 3-§-12 (5 3-%-1

5. (a) Is it possible to find the quotient % + Explain

O
)

why or why not.
(b) What rational number has no reciprocal?

a ¢ a d
(¢c) 1In the sentence N -

what number must % not be? Why?

(d) 1Is division an operation on the rationsl numbers?
Why or why not?
(e) If the number O is removed from the set Q of rational

[JKU:‘ numbers, is division en operstion on the set of numbers

270
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that remain?

(f) Is division associstive? (See Exercise 2.)

12.12 Addition of Rational Numbhers

Since the ratiocnal numbers are an extension of the integers,

we already know how to compute many sums in Q. For example,

-5+ 7 =2 or :% + % = % . O0f course, it should not make eny

difference which of the many availeble fractions ere used to

represent the rational numbers 1% end % . This suggests the

following:

-15 , 21 _ 6, =10 .14 _ 4
3t 3y S5 Y3

This in turn suggests that we wefine addition of rationel numbers
in the following wey:

a c _a+c
75" o

That is, in determining 2 sum we select fractions which have the
same denominator,

Example 1l: What is the sum of the raticnal numbers

%—and%?
24,2 _5+2_7
3 3 3 3

This definition of addition in Q was suggested by the desire
to extend eddition of integers. There is enother reason for

adopting the agbove definition.

(V]
+
=
1
w
f =
+
=
Uif =
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s

If the distributive property of multiplicetion oveﬁ'addition
is to hold in (Q,+,*):

- -

'..]; '..];=’ ‘!'-
- R -
_a. 1
= 7 5
=1
5

Example 2: What is the sum of the rational numbers % and %?
We may indicate the sum this way:

2,3
3YL

However, in order to use the method above, we
must find other fractions for these numbers,

fractions with the same denominator. ~Now, the
least common multiple of 3 and 4 is 12, So we

say that 12 is the least common denominator of

the denominators 3 and 4. We then represent
easch of the rational numbers by a fraction with

denominator 12.

Although we do not prove it here, it is true that there is
one and only one rational number which is the sum of two given

rational numbers. For instence, in Example 2, we could have used

the fractions %g and %g . (Why?) Then the sum would have been

1 "
the number represented by the fraction %%. But this is the

same as the number %% . (Why?)

O
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In oirder to get a general definition from the method we

have been using, let % and %-be two rational numbers. Then to

find the sum % + %, we need to select two fractons that have

the ssme denominator. do you see that

&d be

& _ & ¢ - 2¢
5~ ba M4 = 53"
Thus, we have:
a ¢ _ ad be
T 5d e
_ad + be
B bd

We now have an operational system (Q,+). In this system
there are the following properties:

Commutative Propertiy of Addition

If

+
ole

Qo
I
oo

8 c g a
5 end i are rationsal numbers, 5 +

Associative Property of Addition

If %, %, and % are rational numbers,

€+ 3-8+G+D .

Although we do not prove these properties here, there are
examples of easch of them in the exercises.
Now consider the rational number O, also named by

no " nb 1 no " "O
T: '2": '3‘: E‘ ) s

What are the following sums:

2 0 0 -2
5 2t8 T YT Rth-
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For any rational number %, % + % = EL%—Q = % . You recognize

here the familiar pattern for an identity element; and since
the fraction % represents the rational number ¢ we have the
following property:

Identity Element for Addition

For any rational number %, % + C = %.

In investigating operational systems in the past, the notion
of inverse has been tied closely to that of identity element.
Two elements are inverses of each other if together they iroduce
the identity element. In this connection, study the following

examples:

3,=3_3+(3)_0 -5 ,5_-5+5 _0
zr"-zr-—'trﬁ—'-zr B*t5 = =% -

These and similar examples should make the following property

clear:

Inverse Elements for Addition

a a, =2 _0
If 5 is a rational number, then E’+'75 =7 .

(- is the additive inverse of a in the set Z of integers.)
That is, every rational number % has an inverse, 1%-.

Example 3: What is the inverse of g in (Q,+)?

The inverse is -'—g, g+:—g-=%.

Exemple 4. What is the inverse of :% ?

In Z, the additive inverse of -3 is 3; that
is, = (-3) = 3. So the additive inverse of

=3 in Q is 3, 3 4+3:-0,
T LI S TR :37%)
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So far we have considered only properties of addition and
multiplication separately. In (Z,+,-) the distributive property
of multiplication over addition holds. That is for g, b and ¢
in Z, a*(b+¢c)=(a-Db)+ (a-c). Study the following

examples:
2 1.1y 2,7 . 5 _2 12 _ 2k
3G+7) =3 x+58) =3 35 =105
2,1 2,1y, _ 2 2 _ 14 10 _
-5 +G 7-’“1@*5:*16’5‘ w8 - 158

2 (Ib "%) = %

T
-3 . 3 - - _ = b -5 _ -1
SEECREC EE R 9*75‘3‘3 5% "0

It appears that the distributive property holds in (Q,+,:) salso.
Distributive Property for Multiplication over Addition

ir &, % , and

tﬂm

are rational numbers, then

i

B G -G PGP

We will agree that 2 « 3 +2 - 5 = 6 + 10 and that
3«44 7=12+7. That is, we take 2 . 3 + 2 * 5 to mean
(2 +3)+(2+5)end3 -+« 4+ 7tomean (3 - 4) + 7. With this
agreement the distributive property can be written as

a Cc e

a.(c 6)= . +a.
1) a T v d°v T°
This convention is followed in &sny operational system where
multiplication and addition are defined. Thus, for integers a,

b, and ¢ we write a (b +c) =a - b + a - c.
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12,13 ZFExercises

1, Find the following sums of rational numbers.

(a) %+3 () 3+ 3

(6) £+3 (6) 23+ 72

() 3+ 75 (v) Th+

(@) 2+73 (1) 3+ 3
(Hint:"'g" represents the
same rational number &s 36”’

4 .5 N X W
(e) 5 t3 (J) vy Tz

2. What rational number is assigned to each of the following

ordered pairs by the operation of addition?

(a) (5 ) () (2 52)
(0) (3 2 (£) (53 9
() (& @) () (§5 )
(@) (% () (% T3

What property of (Q,+) do the sums in Exercise 2 illustrate?

L, Compute the following:
(8) B+ +3 (c) (F+2) +8
(b) E+(3+3) () "3+ (2+8)

5. What property of (Q,+) do the sums in Exercise 4 illustrate?
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6. List ten different fractions which represent the identity
element in (Q,+).

7. Compute the following:

() 5+3 ©) 7@+

G) 5+ (1) Hg.
(c) T2+3 (g) lﬁg + l%g
@ g ) s

8. Compute the following sums:

(a) 7+3 (@) 0+7 (g) =22+ =T
() £+3 (e) $+1 (h) -8 + (-4)
() %+% (£) -5 +7 (1) Daz

9. (a) Is (2,+) a group? 1If so, is it commutative?
(b) 1Is (Q,+) & group? If so, is it commutative?
(See Section 12.9, Exercise 5.)
10. Give the additive inverse of each of the following rational

numbers,

(2) (@) &
(b) = (e) =2
(c) ¥ (£) =

1"
11. If we use = % to denote the additive inverse of the rational

number % s complete each of the following so as to have a

fﬂ{ﬂ:‘ true statement.
T 282




(a) -3 = (@) - Lo - (8) - =
A I I
(c) -3 = (1) - (=8 = () -(-2 -

12. Compute the following:

(a) £ (z+%)

(@ G-p+E-3
(e) L+ -3
(£) &P+ R
(6) - (3+5%)
) E-P+E-H

12.14 Subtraction of Rational Numbers

In (Z,+), we say
5 -3 =2, because 2 + 3 = 5,
And, in general,
if ¢+ b =28, thean a - b = ¢,
In other words, subtraction is defined in terms of addition.
We shall make the same sort of definition in (Q,+).

Definition: If &, b, and ¢ are raticnal numbers, then

ERIC a-b‘==cifc+b‘v=,a.
283
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=3
o0
1

For example, since % + % = %, we agree that

3_L1.:2

5 5 5°
And % is the difference between % and %, or the result of
subtracting % from %. We could have found this difference in
the following way:

2 -1 1

57 575

That is, instead of subtracting %, we might add the additive
inverse of %. This is, ol course, the same pattern we noticed
earlier for the integers. We consider below the general case
for the rational numbers.

a c _X
Letg—a—ya

Then by definition of subtraction,

X ,Cc _a
ytaTo
X . ¢ ¢ - a4, =C
F+3 + T8+
X C -C _a,-¢c
7@+ =%t
x 0.2, =¢
y*I"p T3
X-2,:=C
y° bt 4
But in our original equation,
x_.a._.¢c
y b~ q
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Therefore,

2-E=-a;+:-c—

b d b d
As a practicel matter then we can always find & sum instead of
8 difference, provided we remember to add the inverse of the

number being subtracted.

Example: 1%—--'—'%:-‘—2—+§-
-2+ 32
_ -9 + 10
=
15
12.15 Exercises
1. Compute the following differences.
@ 3-3 ™ §-3
() % - 13 (1) §-3
() #-15 () 2 -2
@ %-3 © 3-3
() 23 (1) 2-%
(£) 2 -2 (m) =2 - 2%
(8) =2 - () -
2. () What is the difference % - -g- ?

280
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(b) wnhat is the sum % + :% ?

L E-11]
(c) Wwhat number does % name?

(d) wnat is the sum % + (- %)?

3. Compute the following:
7_3 o 3
(a) §-8 (e) 3+ (-2)
=3 2.3
(0) § -3 (£) -3
(c) &+ (-8 (8) £+ (-gh
13 7 7
(@) 2+ (-3 (h) 1% - 1%
b, Is subtraction a binary operation on the set Q of
rational numbers?
5. (a) 1Is subtraction of rational numbers associative?

(b) Is subtraction of rational numbers commutative?
(c¢c) 1Is there an identity element in (Q,-)?
6. Is (Q,~) a group? Why or why not? (See Section 12.9

Exercise 5).

12.16 Ordering the Rational Numbers

In the zet Z of integers we know that 2 < 3. Since
2 and 3 are also elements of Q, this suggests that the order
relation "<" be defined in Q so that it is still true that 2 < 3.
Also, -7 < -4 and -1 < 5. We could write these in Q as

2 .3 -7 _ -4 -1
1<T'T<T’am7<%:
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or as
4 6 -21 _ =12 4 20
-§<'2—: '-'—3<—§: al’ld-‘q:("q.

These examples further suggest that we agree to the following:

Ia Q, % < % if and only if b > 0 and a ¢ ¢ in Z,

Example 1: % < % in Q, since 4 > 0 and 3 ¢ 7 in Z.
Notice that if we represent the rational
numbers % and % on a number line, the point

whose coordinate is % is to the left of the

point whose coordinate is % .

Example 2: :£ < :% since 4 > 0 and -7 < -3 in 2.
Again, if we represent the rational numbers
2% and :% on a number line, the point whose
coordinate is :£ is to the left of the point
whose coordinate is :% .

g3
- -2 .E -]:LF .o —

b
b O
(U3

Example 3: Compare the rational numbers %% and % . Which
is less? Our method for comparing rational
numbers is based on fractions that have the

O same denominator, Therefore, we shall use
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the fractions

11 « 9 7 « 1
13 9 2d g1

to compare the given rational numbers,
(Do you see why these fractions were chosen?)
Now, since 13 « 9 >0 and 7 * 13 <11 « 9 in Z.

we have
1l
§<izme

From Example 3, we notice that % < %% since 7 * 13 < 9 - 11.
And this suggests a general way of comparing two rational numbers

without actually writing fractions with the same denominator,

Suppose % and % are two rational numbers, and b and d are both

1] ad" llbcll
positive integers, Then the fractions ba and Vel also repre-

sent these numbers. (Why?) And by our earlier agreement,

ad be

Ba < Ba if and only if ad < be.
Therefore, we make the following definition for ordering
rational numbers:

Definition: 1If % and % are rational numbers, and b and d

are positive integers, % < % if and only if
ad < be,

N g

Example 4, Compare the rational numbers % and = .

U

Since 3 >¢ and 5 >0 and 2 «» 5< 3 « 4, we

conclude % < % .

In the definition above and in all of our examples, we have de-

manded that the denominators of the fractions used in comparing
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rational numbers be positive, Is this necessary?

3

Consider the rational numbers % and T We have already

agreed that % < % 5 S8ince 1 > 0 and 2 < 3. And yet if we were

to use the fractions E% and E% to represent these numbers, it

is not true that -2 ¢ -3. This 1illustrates the importance of
1ttt " u

using fractions Y and % with b and d positive when comparing

rational numbers.

Questions: Can every rational number be represented by a

nan L1 1}

fraction % with b > 0? What fraction %

where b > O represents the same rational number

3 -7
as _2? as :3 ?

12,17 Exercises

1. Represent the rational numbers in each pair below by the
fractions having the same denominator. Then decide which

rational number 1s smaller.

2 3 A
(a) 5 and g (e) 2 and £
8
(p) % and g (a) 3 and %
2. Draw a number line, and locate points on 1t to represent

each of the rational numbers in Exercise 1.

3. Decide which of the following statements are true, and
which are false. (As with the integers, the sign ">"
means "is greater than.")

-2 =3 -3 ., -
(a) L < 3 (a) -7 <8 (e) ) < —%

>0 289
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(®) $>2 . (o) §>2 (h) §>%
() < (0 £ (1) <3
4, For each pair of rational numbers below, decide which
is less.
(a) 4.8 (a) =43, 3L (5) 22,1
(0) 3,3 (o) 5,4 (n) 2,52
() 3,4 (1) 2,4 (1) 2,3
5. 1r 2 > 2, then 2 1s a positive rational number.
Ir % <-%, then % is a negative ratlonal number.

Decide whether each of the following rational numbers 1s

positive, negative, or zero.

(a) 2 (e) 22 (1) §
(v) =3 (r) 3 (3) 23
(c) 2 (g) =1} (k) =32
(a) 3 (n) 3 (1) £
6. If % 1s a rational number, and the product of the integers

a and b 1s a positive integer, is the rational number %

positive? Give an argument for your answer,
7. Answer each of the following, and give an argument for
your answer,

Q (a) Does the ordering of the rational numbers possess

the reflexive: »pr',qper’ty? 290
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(b) Does the ordering of the rational numbers possess
the symmetric property?
(c) Does the ordering of the rational numbers possess
the transitive property?
8. Complete the following sentences for b and 4 positive

integers, and a and ¢ integers.

(a) 1If % < %, then ad  be.,
(b) If’%‘ =§, then ad  be.

(e) 1r % > %, then ad_ be.

9. (a) 1Is there an integer "between" 2 and 3? That is, is
there an integer x such that 2 < x and x < 3? 1If
SO, name one.
(b) Is there a rational number between 2 and 3? If so,
name one,
(¢c) Name a rational number between % and % .

(Hint: You might fine the "average" of the numbers.)
(4) Name a rational number between g and % .

(e) Given any two rztional numbers, do you think it 1s
possible to find another rational number that is
between them? Give an argument for your answer.

In problems 10 - 30 make the indicated rational number

computations.

1 1 3.
10, 573 21, -2 - (g 8)
1. 3+§ 22, (-2-g) -8
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12, 7% 23, 21 - 3

13. 7] 24, 2 -21

4, g-e 25. =% .3

15. 3§ -2 26, &+ -3

16. g+ 2 27. 3+ .10
17. 2 + :g 28. (% + 6) + 3+ %
18. (% «9) - g 29, (2 + %) + (% + 2)
19. 2+ (3 + 3) 30. (5 2%+ (5 3)

20. (2 + %) + 3

In each of tha problems 31 - 36 decide which of the

! rational numbers in the pair is smaller .

3t. -3, 33. 2,04 35. 6, 4
32. 145 % 344 :‘2_%') "4 36. 1, 1%’90%'

12.18 Decimal Fractions

In the preceding sections, we have developed the system
(Q,+,-). Now we look at another way of naming rational numbers

a way that is based on the idea of place value. You are probak

already familiar with the idea of place value; for instance,
when we write "3607" we mean

(3 * 1000) + (6 + 100) + (0 * 10) + (7 + 1), or

(3 + 10°) + (6 + 10%) + (0 « 10) + (7 * 1).

ERIC 29R
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This form is referred to as "expanded notation."
In your elementary school work, you probably saw charts
like the one below which explalin the place value scheme used in

writing names of rational numbers that are also whole numbers.

1 5 4 8 7 6 3

2

106] 10°| 104 {103 {102 {10 | 1

(V2] v v

ol gl 8] ¥k
wlazl ZI Z| A
Zz W | < Lt
O jxwn| v v | X
= a3l 3 2{al2 |
~l 4 =z
=z DTwWE| T | 2| |6
E T =T |

Thus, in "1,548,763" the "T" represents 7 hundreds (that is,
700), since it is in the "third place" to the left of the
decimal point. (In writing the name of a whole number, it is
not common to mark the decimal point, but it 1s at the extreme
right.) There is a very important pattern in this place value

scheme. As you move from left to right, the value associated

with each place 1is T% of the value associated with the preceding

place, Thus, with the third place we associate the value 100

but with the second place, we assoclate the value T% * 100 or 10.

In order to have names for all rational numbers (not just whole

numbers) we extend this pattern to the right of the decimal point.
That is, the value of the first place to the right of the decimal

point 1is T% + 1, or T%; the value of the second place to the
1. 1 op—2 .

right of the decimal point is 0 75 °F 160 ° We may also

indicate T5% as T%B. The table below shows the values associated

with the first six places to the right of the decimal point.
‘G" u should be able to extend the table as far to the right as

ired.) D 293
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HUNDREDTHS
THOUSANDTHS
TEN
THOUSAND THS
HUNDREC
THOUSANDTHS
MILLIONTHS

TENTHS

In the table you see the numeral ",3407." The table makes it

easy to see that thils means
. ._.!: . .__];.- . ..-—l'—-— . —-—l—
(3 13) + (4 150 *+ (0« o500 *+ (7 600! *

But this 1s also

3000 , 400, o 7 ___ 3407
10000 10000 10000 10000 10000 °

(Do you see why?)

Therefore,

L3407 = T%%%%u

and ".3407" 1s a decimal fraction name for a ratlonal number.

Question: Can you write an equation of form "b * x = a

where a and b are integers, whose solution is
the rational number .3407?
If you are not already familiar with decimal fraction
notation, the following examples should help to make 1t clear,

Example 1: " . 25" ig the name of a rational number.

Represent this rational number by an irreduclble

frection. o 294
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We know that .25 = (2 . ) + (5 100)
= 20 . .é_
~ 100 100
= 22
- 100 °

1" 1}
Of course, 100 is not an irreducible fraction.

2

0

But we know that % . Therefore,

d

\Ji
1]
S

.2

Example 2: Represent the rational number .250 by an
irreducible fraction.

_ 250 _ .25
-250 = 1556 = 100 °

Do you see then that this example is really the

same as Example 1? Again, the irreducible
"

1]
fraction called for 1is &. That 1is,
250 = .25 = .

On the basis of Example 2, you should begin to see why it
is true that some rational numbers have an infinife number of

decimal fraction representations., Thus,
3 = .25 = .250 = .2500 = .25000, ete.

Question: Do the decimal fractions " 4" and ".400" repre-

sent the same number? Why or why not?

Example 3: Represent the number 4,18 by a fraction %,

where a and b are integers.
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Example 4.

Example 5

300 100
Loo . 18
So, 4.18 = -i—c-)—o- + m
_ 8
- 100 °*
Represent the rational number % by a decimal

fraction. We know %'= T%" (Why?) Therefore,

g - A, Of course, we could also use ".40,"

5
".400," ",4000," etc.
Represent 15% by a decimal fraction. An

1] 1
expresslion such as 15% ls sometimes called

a mixed numeral, since i1t looks as though it 1s

composed of a symbol for a whole number together
with a fraction. The important point to under-

stand is that it means

15 + % .

Therefore, from Example 4 we know:

15 + 4

155
= 15.4

Represent g by a decimal fraction. We know

that % is a quotient; namely, 3 + 8. Therefore,

in the space at the right we carry out this

division, Another way to .375
think about this division 8l3.zoo
is as follows: 2.4
3 _ 3000 60
1000 - g =g ﬁé

- 375. 296 jg
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Then, since 1000 - % = 375, % = T%%% . (Do

you remember how a rational number was defined

as the solution of an equation?)

12,19 Exercises

1. Express each of the following decimal fractions as an

" n
irreducible fraction %.

(a) .3 (£) .03 (x) 3.05
(b) .32 (g) .003 (1) 25.1
(e) .320 {n) .000003 (m) .625
(a) .325 (1) .s500 (n) 10.625
(e) 7.3 (J) .o005 (o) .33
2, We know that every rational number is the solution of an

equation of the form "b +*x = a,"

where a and b are
integers, b # 0. For each of the following rational
numbers, write an equation ¢f which the number is the

solution,
Example: .19 = T%%
Therefore, .19 is the solution of "100 « x = 19."
(a) .5 (e) .33 (1) .60 (m) -.5
(v) .7 (£) .333 (3) .6 (n) -.05
(c) .08 (g) 2.7 (k) .123456 (o) -2.7
(a) .07 (h) .375 (1) .333333 (p) -.375
3. Find a decimal fraction name for each of the following

rational numbers. (The rational numbers listed in this
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exercise are so frequently used that it is advisable to

remember their decimal fraction representations.)

(a) % (e) £ (1) 3§
(») 7 (r) 2 (1) 8
(c) 2 (e) = (k) §
(a) 2 (n) g

For each of the following rational numbers, write four

other decimal fractions which represent the same number.

(a) .5 (a) 25.6 (g) .000005
(b) .2 (e) 4.0 (n) .25
(c) .05 (r) .025 (1) 5

Recall that a rational number can be represented as a

4 n
%, where a and b, the numerator and denomina-

quotient '

tor, are integers.

(a) In the decimal fraction ".5," what is the numerator?
What is the denominator?

(b) What are the numerator and denominator of ".00007"?

(¢) wWhat are the numerator and denominator of "8.2"?

(d) Does every decimal fraction represent a rational
number? Explain. (How is the numerator determined?
How is the denominator determined?)

Pind a decimal fraction which represents each of the

following rational numbers. (See Example 6 of Section

12.18.)
(a) 23 (a) 5%
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(b) =& (e) 22
() 2 (£) 553

12.20 Infinite Repeating Decimals

Can every rational number be represented by a decimal
fraction? The exercises in the preceding section may lead you

' and although this is correct, there is a major

to answer "yes,'
difficulty with many rational numbers. As an example, let us
try to find a decimal fraction for %. As before, we know this
is a quotient, and the appropriate division is shown below:
3]1.0000
9

———

10
9

10

Do you see the difficulty? 1In this case, the division
process is something like a broken record. For as long as we
care to continue writing, we will have to place a "3" in each
place to the right of the decimal point. Thus this decimal
does not "end" or "terminate" as it does, for example, with

g = .375. (See Example 6 of Section 12.18.)

How then can we represent % with a decimal fraction?

| [Jiﬁ:« One answer lies in giving an approximate decimal fraction. To
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see this, study the following steps.

0<3gt

We know that % is "between”" 0 and 1, and we say that %

is in the closed interval [0,1]. In terms of a number line
this means that the point representing % lies on that part of
the line consisting of the points representing ¢ and 1, to-
gether with all the points between those two:

1
20 3 1,
We can also place % in smaller and smaller intervals, as
follows: 1
1 3
. < .4 ¢ - = r—
3 -<- -3 - 03 J.L
1
1 3
< = < .34 € a a —
B33 33 N
1
333 < < .33 —2 —
333 .33
1
3333 < = < 3331 —_— .
’ 3= .3333 .333h

Do you see that in a way we are "squeezing" the number %?
Each of the above intervals is smaller than the one before it,

and is contained in it. We call such intervals nested inter-

vals, Thus, we have a sequence of nested intervals containing
the rational number %. Although we stoppred with the interval
[3333, .3334], the sequence goes on without end.
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Question: Continuing in the pattern above, what is the
next interval in this sequence of nested
intervals?

If we form a sequence of the left end points of these
nested intervals, we get: .3, .33, .333, .3333, .33333, ..., &
sequence of rational numbers. None of the numbers in this
sequence 1is equal to ; . For instance, consider the first num-

3
ber, .3:

3 F

Wi+

. In fact, .3 < % . We can find the difference

between % and .3 as follows:

1 _3.1._..3
372 °"3°710

= 10 _ 9 _ 1
3 " 30 =30 -
1 " n 1
Therefore, although .3 # 3 it is "very close” to 3

because the difference between the numbers is small. We can
say that .3 1is an approximation to~%, and write:

% ~ .3

This approximation is said to be correct to tenths or to
one decimal place,
Next let us consider the second number in the sequence, ,33,

The difference between this number and % is computed below:

1 =133
'3""-33-'3--100
_ 100 _ _99
= 300 -~ 300
- 1
300 °
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Therefore .33 is a better approximation to % than is .3,

That 1s, it 1s closer to % since 1t differs from 1t by only

3%5 instead of §% . (How do we know that 3%5 < 3% ?) Thus

we write
3=~ .33,

and say that this approximation is correct to hundredths or to
two decimal places,

In fact, as you might have guessed, each number in the
sequence

.3, .33, .333, .3333,...

is a closer approximation to % than the number preceding 1it,

Question: What is the difference between % and .333°7
Though we shall not explore the matter here, it is true that by
going far enough in the sequence you can get a number as close
to % as you like,

Now, from the number %, we have learned a very important
fact. Not every rational number can be expressed by a terminat-

ing decimal fraction, Many rational numbers, such as %, have

decimal fraction representations that are infini‘te, repeating

decimals,

As another exaumple, let us work with the rational number
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L2k, .,
3318.0000
66
1 4o
1 32
80
66
140
132
8
24 ¢ §% < .25 3% ~ .24 (correct to hundredths)
2hed ¢ §% < 2bes 3% ~ 2424 ( to four decimal
8 ' 8 places)
2babob ¢ 33 < 2b2kzs 33 . 2l2hoh

As with %, there is no terminating decimal representation for
8, but there is an infinite repeating decimal associated with
33

it, and we can approximate 8 to any desired number of decimal
33

places.

12.21 Exercises

1. (a) Wwhat is the difference between % and .333?

(b) What is the difference between % and .3333°7

(¢c) Which of the numbers, .333 and .3333, is a better

approximation to %?

2. (a) Write an equation of the form " b . x = a," where a
and b are integers, which has % as solution.
(b) Write an equation of the form " b - x = a," where 2

and b are integers, which has .3 as solution.

201.
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(c) Write an equation of the form "b + x = a where a
and b are integers, which has .33 as solution.

(d) Would the same equation work for all of the parts
(a), (b), and (c)? wWhy or why not?

In looking for a decimal fraction representation of %,

the division process below might be used:

.1666 ...

6 | 1.0000
6
4o

36

4o

36

4o

36

4

Thus, we agaln get an infinite repeating decimal, although

the digits do not start repeating right away.
(a) What is the difference between % and .16°?

(b) What is the difference between % and .17?

{c) Wnich is a better approximation to %, .16 or .17%
(d) what is the difference between % and .1662

(e) What is the difference between % and .167°%

(f) Which is a better approximation to %, .166 or .167°?
(8) Which is a better approximation to %, .17 or .167?

(h) What is-the best approximation to %, correct to four
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decimal places?
4, For each of the followling rational numbers, write the
best decimal fraction approximation, correct to four

decimal places.

1 1
(a) % (e) 11 (e) 1z
2 2 2
() 2 (a) 2 (1) 2
5. Consider the sequence below:
.1, .11, .111, .1111, ...
(a) what is the difference between % and .1?
(b) what is the difference between % and .11?
(¢) Wwhat is the difference between % and .1117
(d) what is the difference between % and .11117

(e) Suppose the sequence continues in the pattern
suggested by the first four terms. How far would

you have to go in the sequence to find & number that

1 1
differs from g by ,OO0,000?

6. (a) Give an approximate decimal fraction (correct to

three decimal places) for the rational number
1.1
2'3' 30
(b) 1Is the decimal fraction representation of 2% an
infinite repeating decimal? (Remember that the

decimal fraction need not start repeating right

away. )

300



10.

11.

- 300 -

Consider the number % .

(a) In dividing by 7, how many numbers are possible as
remainders? (Remember that a remainder must be less
than the divisor.)

(b) Carry out the division process for 1 + 7 to twelve
decimal places.

(c) At what stage in the division process did you get
a remainder that had occurred before?

(d) At what stage in the division process did the
decimal fraction start "repeating”? Can you ex-
plain why it happened at that particular time?

In carrying out the division 3 + 8, what remainder occurs

that causes the decimal fraction to terminate?

Try to give a convincing argument for the following:

The decimal fraction representation for any rational
number % is either a terminating decimal or an
infinite repeating decimal.

Write a sequence of nested intervals all of which

contain the number T% . Begin with the interval [O,l]
and get a total of five intervals., Also show the
intervals on a number line.

Explain why the following sequence of intervals is not a

nested sequence:

lo.1], [1,2], [1.5,2.5], [.1,.2]
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12.22 Decimal Fractions and Order of the Rational Numbers

We have already seen how to tell which of two rational
numbers % and % is iess, when fractions are used to represent
the numbers. Now let us see how to make such a comparison when
decimal fractions are used.

Example 1: Which is less, .3 or .42

Since .3 = T% and 4 = T%

i1t 1s easy to tell that .3 < .4.

Example 2: Which is less, .2567 or .2563°?
Notice that first three digits of these decimal
fractions agree, place by place. The fourth

decimal place is the first one in which they differ.

_ _256 7 .
-2567 = 1556 * T0000 *
256 3

-2563 = 1556 * 16000

Therefore, .2563 < .2567.
Example 3: Which is less, .8299 or .85217

e 8 299
8 521

Therefore, .8299 < .8521.
Notice again that these two decimal fractions
agree in the first decimal place, The first
place in which they disagree is the second place;
and 2 < 5.

These three examples show that 1t is very easy to tell

o )
]ERJthich of the two rational numbers 1s less when the numbers are
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represented by decimal fractions. Suppose we have two decimal
fractions

8y 83338,
and
b, by by by '
and &, = by, a3 = by, but by < a;. Then do you see that
.bybabab, < 2333238, 7 In other words, the way to tell which
of two decimal fractions represents the smaller number is to
look for the first place (reading from left to right) in which
they disagree; the one which has the smaller entry in that
place represents the smaller number,
Example 4: wWhich is less, 23.524683 or 23.524597°?
The first place in which these decimal
fractions "disagree" is the fourth decimal
place. And since 5 < 6, then
23.524597 < 23.524683.

12.23 Exercises

1, In each of the following, copy the two rational numbers.

Then place either "¢" or ">" or "=" between them so that

a true statement results.

(a) 12.5 12.4 (r) 826.33 826.30
(b) 8.33 8.34% (g) 5.4793293 5.4789999
(=) .1257 .1250 (h) 548 551
(a) .1257 .125 (1) 1.9999 2
(e) .6666 .6667 (3) .9874 .9875
]ZRjkj 2. | This exercise is similar to Exercise 1, excent that
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negative rational numbers are used. Remember that
although 1 < 2, for instance, -2 < -1. Thus, although
.5 < .6, we have -.6 < -.5,

(a) -3.567 -3.582 (e) -42.80 -42.85

(b) -.12345 -.12453 (r) -42.8 -42 .85

(e} -.99 -1 () -12,9999 -12.9998

(d) -100.555 -100.565 (n) -4.378 -4.3779
3. Is it possible to find a rational number x "between"

.354 and ,357? That is, we want a number x such that
354 < x < .357.

Notice that these two decimal fractions agree in the
first two places, but disagree in the third place. Thus,
for x, we can use a decimal fraction that agrees with the
two given ones in the first two places, but has in the
third place a digit that is between the two given third
digits. For example, x might be .355, since .354 < .355 ¢
.357. (This is not the only value of x that can be used.
Can you give others?)

Now for each pair of rational numbers below, name

a rational number that is between them.

(a) .6, .8 (e) 5.420, 5.430
(b) 2.35, 2.39 (f) 5.42, 5.43
(c¢) 45.987, 45,936 (g) 3.8, 3.9

(a) 102, 108 (n) 2.99, 3

Compare Exercise 3 here with Exercise 9 in Section
12.17. Do you see that between two rational numbers it

Q is always possible to find another rational number? For

this reason, we say that: (Q,<) is dense: that is, the 309
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rational numbers form a dense set.

4, Given the rational numbers 1 and 2 find a rational
number X such that 1 < x < 2; then find a rational
number y such that 1 < ¥ < x; then find a rational
number z such that 1 < z < y; then find a rational
number W such that 1 < w < z,

Draw a number line and represent the numbers 1,2,X,¥,Z,W,
by points on the scale.

5. Do the integers form a dense set? Why or why not?

12,24 Summary

In this chapter we have developed the rational number

system. In order to see why this system is such an important
one; let us retrace some of the steps in its development,

In the whole number system, there are two binary operations,

addition and multiplication. Subtraction and division are not
operations., Thus, for example, the subtraction 2 - 5 and the
division 2 + 5 are not possible in (W,+,:). We might say that
subtraction and division are "deficiencies" of the whole number
system. Part of our work this year has been concerned with re-
moving these deficiencies,

We first removed the subtraction deficiency by developing
(Z,+,*), the number system of integers. Subtraction is a binary
operation in this system, 2 - 5, for example, is ~3. And since
(z,+45°) contains (W,+,*), we have in the integers all of the
operations and properties of W, together with the new operation

of subtraction. Thus, Z is an ﬁextension" of W, a fact suggested
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by the following diagram:

(W, +, +) extension to (Z, +, +)
make subtraction
an operation

However, division is not an operation on Z, and in this
chapter we removed this deficiency by developing the system
(Q,+,+) in which division (except by 0) is always possible,

For example, the quotient 2 + 5 is the rational number we have
called %. And since (Q,+,+) contains (Z,+,+), Q is an extension

of Z. Therefore, we can complete the above diagram as follows:

extension to
(w: +, ') """""" 9 (Z: +, ')
make sSubtraction
an operation

n
[
|
(
|
y

extension to make
division an operation
(Q: +: ')

In (Q,+,*) the four operations are defined as follows, (b,d # 0):

a,c_ad+be a.,c_ac
b " d bd b d  bd
a_c_a,:z¢ a,c.2.d
F-d-%*d 5+q=% "¢ (¢#0)

(Q,+,°) has the following important properties.

¥
]ERi(jf X, ¥, and z are rational numbers, then:

3
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(x+y) +z2z=x+ (y + 2) (x+y) "2z x+(y- 2)
x+0=x X+1l=x

x+(-x) =0 x * % =1 (x £ 0)
X+y=y+x X y=y-x

x*(y+2) =x+y+x+2
Every equation "px = q" where p and g are rational numbers,
and p # 0, has a solution, namely x = q + p, in (Q,+,*)

The rational numbers are ordered, If % and % are rational

numbers, with b and d both positive, then
a_ ¢
b <-a' if and only if ad < be.

The rational numbers form a dense set. Between any two

different rational humbers, there is another rational number,

12.25 Review Exercises

1. Solve the following equations.
(a) 4+ x=3 (f£) 12+ x=5 (k) 102 « x =511
(b) 3+x=4 (g 3°x=20 (1) -55°* x =30

(¢) -4+x=3 (h) 3*x=21 (m) 87 « x = 87
(a) 4+ x=-3 (1) 7 x=5 (n) 87 . x=0
(e) -4 x=-3 (J) -3 :-x=28 (o) 4+ x=a

2. Compute the following.
(a) §+2 (1) §+2
(v) %+ 2 (3) §-2
(c) 2-72 (k) 8- 2

312



- 307 -

(a) 7-3 (1) 8+¢
() 3-8 (m) 2 -8
(1) 3-8 (nj 2+8
(g) %+38 (o) 347
(h) g+3 (p) 7+ 3
3. Compute the following.
(a) (F+3)+§ (£) (3+2)+2
(0) 5(3+32) (e) g+ (2+2
(c) 7+ (2+12) (n) (8+3) -
() B+ (3+3 (1) 233
() (2g+4)+3 (3) F+L+L+
4 Compute the following:
(a) g+§ (c) _1.‘3*4,%
(v) 3+§ (a) £+
(e) &+¢
5. Write each of the following in expanded notation.

. [ — L4 ._1. . —]'—
Example: 23 = (2 10) + (3 loo)

(a) .6 (e) 25.08
(b) .63 (r) 3.175
(¢) .063 (g) 2.000005

']ERikf (d) .00603 413 - (n) .3333

Full Tt Provided by ERIC.
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6. Write a decimal fraction representation of each of the
following. If the decimal does not terminate, give an
approximation to four decimal places (i.e,, correct to

ten thousandths),

(a) 5 () 3
(v) 32 (2) 1%
(c) 2 ()
(a) 2 (1) 8
(e) 3% (9 7

7. Copy the following, and place one of the three symbols,
e, WS or """ petween the pairs of rational numbers so

that & true statement results in each case,

(a) %— % (a) .3475 .3429 (g) .0000L 000009
(v) 3 & (e 3 .333333 (n 23 23
() 8 2 (9 .375 g (23 2
8. For each pair of rational numbers below, write the name

of a rational number that is between them,

(a) 3, 1 (c) 3 8
1
(v) 5 7 () 3, 3%

414
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(v)

(c) x-
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1 4
(e) ’3‘, g

(£) .345, .346

the following equations.

310
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CHAPTER 13
SOME APPLICATIONS OF THE RATIONAL NUMBERS

13.1 Rational Numbers and Dilations

Earlier, you learned that "Dab means "D, o Da," or the di-

b
lation D, followed by the dilatlon D,. At that time, 1t was re-
quired that a and b be integers. Let us now consider the com-
position D, © D, where a and b are rational numbers. For the
present we shall restrict the discussion to dilations on a line.
Consider

D% o D3.
Since D3 acts first, we show below the images of certaln points

under this dilation.

Since we are using the rational numbers, any point with a ra-
tional coordinate has an image under this dilation. For in-
stance, the point with coordinate 2 1s mapped into the point
with coordinate %, since 3 . g = g.

Question: Under dilation D,, what are the coordinates of

3
the images of the points having the following
coordinates:
1

3, 1, %, 10, 100, -1) -%c

In order to be consistent with the way in which we interpreted
Da’ where a 1s an integer, we shall say that under D, a point P
with coordinate x 1s mapped into a point P' whose coordinate 1is

% . X. The 1mages of certaln points under the dilation D% are
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shown below.

Question: Under the dilation Dg’ what are the coordinates
of the images of the points having the following
coordinates:

1, 2, L, 3, 10, 100, -2
J-JzJé, 3 > .
Now we consider the compositions D% 0 D3. The diagram below

show' the image (under this composition) of the point with coor-

dinate 2.
< NI
T3 -2 A o 1 2 3 4 5 & 7
Note that D3 takes 2 into 6, then Dy takes 6 into 3. Thus (D% )

D3) takes 2 into 3. Generally, under the composition Dy © Dg,
ary point P has an image P' whose distance from the origin is g
times the distance of the point P from the orlgin. In other words,
we may write:

D% o D3 = D%
Thus we see that the iilation D% may be considered as the com-
position of two dilations., the first D3, the second D%.

Question: What is D3 0 D%? Explain why Da o 1 =D, 0 Da'

1
B

o

Question: Since under D; the image of any point is 3 as far
2

from the origin as the point itself, what do you
think the inverse of D% is? Consider Da o] D%= Dl'

3
317
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Question: Express Ig as the composition of two dilations.

It 1s also instructive to look at what happens to a segment
under a dilation such as D%. In particular, let us look at the
segment whose endpsints are those having coordinates O and 1 such

a segment 1s called a unit segment, and we shall denote it by "U."

Now since D% 1s the composition D% (o} D3, do you see that segment

U is first "stretched" to a segment 3 times as long.

. [
-3 -2 =1 Q 1 2 3 4 5 6 7

Then, that segment is "shrunk" to a segment half as long, as the

diagrams show. The final segment, which has been labeled

L
[
r
y

V, 1s then the image of U under the dilation D%. We may simply

writes:
VvV = 3U,

which may be read "V is % times U," or "V is 2 the length of seg-
ment U,"
Example 1. If a segment X has a length of 10 inches, what

is the length of $X?
We could think of this problem in terms of the
composition of dilations D% o] D3 on a line., If
the segment X is first "stretched" to a segmen
3 times as long, the resulting segment has a

length of 30 inches. If that segment is then

.]ZRJﬂj "shrunk" to a segment one-fourth as long, the

J18
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length of the resulting segment is & * 30, or

%P inches. In practice, of course, it is not

necessary to explain the solution in this way.
We may simply write
goflo=§°1o=?ﬁ9(or¥).

Example 2, If segment X has length 10 inches, what is the

length of §X?

g of 10 = % * 10 = %? inches.

Whole number dilations, D., D2, D3---are sometimes called

1

stretchers where D, 1s the identity stretcher. The unit frac-

1

tion dilations Dl’ Dl’ Dl---are sometimes referred to as shrink-
I 3 3
ers. Dl is the same as Dl or the identity shrinker,
1

Notice that in Example 1 the final segment is shorter than
the segment X, while in Example 2 the final segment 1s longer
than X. Is there any way to predict this beforehand from the

dilations D3 and Dy? (Compare the "stretcher" and "shrinker" in
Uy 3
each case,)

Questiont How must a and b be related so that under the

dilation Da:
b

-
-
N’

the image of a segment 1s longer than the
segment itself?
(2) the image of a segment is shorter than the

o segment 1tself?

J19




- 314 -

(3) the image of a segment is the segment it-
self.
Answers: (1) adb; (&) a<b; (3) a = b,

13.2 Exercises

1. Draw three separate number lines, and on each mark points with

the following coordinates:
0, 1, 2, g, g, and -1,

(a) On one of the drawings, show the image of each of the
points marked under the dilation Db'

(b) On another of the drawings, show the image of each of
images from part (a) under the dilation D%.

(c) On the third drawing, show the images of éach of the
original points under the composition D§ o} D2.

(d) Express the composition of dilations in part (c) as a
single dilation.

(e) Express each of the following as single dilations D, s
where X 1s a rational number:

Dl O Dy, Dl o D7, Dl o Dlo’ Dlo o Dl'
5 3 2 2
2. Draw two number lines, and on each mark points with the fol-

lowing coordinates:
0, 1, 2, 3, 4, 5, %, and -2,

(a) On one drawing, show the image of each of these points
under the dilation D%.

(b) On another drawing, show the image of each of the orig-

JERJ(j inal points under the dilation D2.

9920 . ¥




(c) 1Is it correct to write D, =D,?

(d) When is D, = D,?
B d

3. On a number line, let P be the point with coordinate 2.

(a) Let P' be the image of P under D.. What is the co-

5
ordinate of P'? 3

(b) Let P" be the image of P' under D,. What is the co-

ordinate of P"? 3
(c) wWhat is the image of the original point P under the
composition D2 0 D5?
3 3
(d) write the composition in part (c) as a single dilation.
4, (a) Write a single dilation Dx for the composition Dg o] DB.
y z

(b) According to the definition in Chapter 12, what 1s the

product g ' g?

In this section, we have used dilations to give meaning to a
statement such as g of X, where X is a segment. And this kind
of expression is common in everyday uses of mathematics. For ex-
ample, if X represents a class of students, then % of X (that is,

L}
2 of the class") can be interpreted in much the same way as with

3

segments. We really mean % times the measure of X. And in this
case, the measure is a whole number. Thus, if there are 30 peo-

ple in the class, "§ of the class" is 20, since % * 30 = 20,

Problems 5 through 12 are of this kind.
5. There are 100 senators in the United States Senate. On a
Q
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10.

11.

12,

13.
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3

recent vote, é@ of the Senate votes "yes" on a certain bill.

How many Senators voted "yes"?

A certain state has an area of 70,000 square miles. T%ﬁ of
the state is irrigated land. How many square miles in the
state are irrigated?

Jim has $2,000 in the bank, and the bank is supposed to pay
him I%U of that amount for interest. How much should Jim
receive?

In 1960, the population of a certain town was 18,000. To-
day the population is % of that number. What is the popu-

lation today?

A family spends 23 of its income on food. If the income

100
for one year is $8500, how much money does this family spend
for food in one year?
If one pound of ground meat costs $.90 what will be the cost
of 2% pounds?

4
{a) If Jim's height is = of Bill's height, who 1s taller?
3,

WA

(b) If Mary's height is 4 of Sue's height, who is taller?
(¢) If Bob's height is g of John's height, who is taller?
In a certain town, there are 5000 registered voters. In a
recent election, 3500 people voted. What "fraction" of the
town' s registered voters actually voted? (Express your an-
swer by an irreducible fraction g. Check your result by
showing that £ of 5000 is 3500.)

In this problem we consider dilations Dx in the plane, where

x is a rational number. Just as Z x Z is the set of all

points with coordinates (a,b), where a and b are integers,
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S0 Q@ x Q is the set of all points with coordinates (x,y),

where X and y are rational numbers.

(a) Draw a pair of axes, and plot all points whose coordi-
nates are (a,b), where a2 and b are integers between -4
and 4.

(b) Now plot a point with coordinates (g,g). Note that this
point does not belong to Z x Z, but 1t does belong to
QX Q.

(c) Consider the dilation D,. Under this dilation, the
image of (g,g) is defined to be (2'%,2'1), or (3,%).
Plot this image point. (Do you see a segment in the
plane that has been "stretched" to twice its original
length?)

(d) Under the dilation D%, the image of (S,Z) is (é . g,
% y E). Plot this 1mage point. (Do you see a seg-

ment in the plane that has been "shrunk" to %

of its
original length?)
14, PFrom Exercise 13, we make the following definition: If
(x,y) 1s an element of Q x Q, and D, is a dilation where
¢ is a rational number, then the image of (x,y) under D,
is (ex,cy).
(a) Plot the images of the following points under Dy

(2:8): (4112): (9:"4): ("8,6), ("2:'12): (O:O): (l:l)-
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(b) Now for each image from part (a), plot
the image of that image under Du .

3
(c) How are the dilations D, end D), related?
I 3
15. Show that Dﬂ o DE = D1
b a
(s) when b < a;
(b) when b > a;
(¢) when b = a.
16. What is the inverse dilation of :
(e) D, (b) Dy
3 5
(c) Dy (d) Di (y # 0)
3 y
17. (a2) How would you describe the images of the points in

Q x Q under the dilation DO?

(b) How would you describe the images of the points in
Q x Q under the dilation D

?

1
(¢c) How wovld you describe the images of the points in

Q x Q under the dilation D_l?

13.3 Computation with Decimal Fractions

In Section 13.1 we deelt with such problems as finding

ﬁ of X. For example if X is 2 segment having length 2% inches,

then

.5 _ 7
5 = 18 .

PO| 1~
Hw

%ofX:%-E
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At times, problems such as this are expressed in terms of decimal
fracticns. PFor instance, we could just as easily speak of find-
ing .75 of a segment X whose length is 2.5 inches. Then we would
have to compute

.75 x 2.5.
The result should be the seme as before, 1%. How is the com-

putation with decimal fractions carried out? Study the com-

putation below.

__15 ., 25 _ 1875 _
.75 X 2.5 = W X E‘ = m = 1.875
Thus, .75 x 2.5 = 1.875.

This computation could be done &3 below:

2.5
X .75
125
175
1.875
There is a relationship between the number of digits to the right
of the decimel point in the product 1.875, and the number of
digits to the right of the decimal point in the two factors, 2.5

and .75. Do you see what the relationship is? (It is = result

1 1 1
of the fact that 155 X 15 = T665')

Question: To which of the following is the product
1.5 x 1.5 equal?
.225, 2.25, 22.5, 225,
What is the sum of $2.45 and $3.87? The computation is shown below.

$2.45

+  $3.87
$6.32
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Notice that we add tenth to tenths, hundredths to hundredths, etc.

4 5
245 =2 + 1o + 100 and
8 _1
387 =3 75 Too °
Then,
4___5_ 8 _1T
4 87 = — + (3 + = —
2.85 + 3.87 = (2 + 75 100) (3 10 100)
4 -5 _I
=(2+3)+ 1o+ 10) + (00 * 100
1
=5+3c %15
=5 + 13 + —= (since . —l)
B 10 100 100 ~ 10
3 _2 10
=6+75 Too (since 6 = 1)
= 6,32

In these steps, you should be able to point out where we have used
the assoeiative and commutative properties of addition of rational
numbers.

Subtraction computations with decimal fractions are done in a
way similar to addition computations, as the following example il-
lustrates.

Example 1. Subtract 4.387 from 12.125,

12,125
- 4,387

7.736
(We ca:: check this result by no.'ng that
7.738 + 4.387 = 12,125,)

]:Rjkj The quotient of two rational numbers may also be computed when
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decimal fractions are used to represent the numbers., PFirst, con-
sider the quotient .125 + .5, We may express this guotient as

.125
.5

and we know this is the same as

-——2.5 X 10 ° (Why. )
Furthermore, élgé b'4 10 1.25
5 0 5
, . > .125
Therefore, instead of working with the quotient £ >
we may compute the equivalent guotient l‘ag . The computation is

shown below:

25
25

This process is Jjustif .ed by the following:

1.2 1 1 - X 1
5 =% 1.25 =5 x (100 x 125) = 100 X (5 x 125)

I

- x 25 = .25,
100

il

In the preceding division problem we multiplied the given

guotient ng% by %% so that we obtained the equivalent quotient

lééi » in which the denominator (divisor) is a whole number., If

we try the same approach with the quotient
3

.0221

we choose to multiply by %%% . (Do you see why?) Thus,
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.0221 _ .0221 , 100

.13 .13 100
_2.21 .17
13 1 2.21
13
91
= ,17 91

Therefore, ;92%% = ,17.

Question: What is the product .17 x .13?

Often, quotients of rationsl numbers (expressed by
decimal fractions), need te carried out only to a specified
number of decimal places., Study the example below, in which
the guotient has been computed correct to two decimel places
(hundredths).

Example 2. What is the quotient when 253.42 is divided by

8.7%

253,42 _ 253,42 , 10 _ 2534.2
8.7 8.7 10 87

29,128
87 @534.200
174

ToU
783

112

_87

250

174

760
696

38 wm
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Therefore, correct to two decimsl places,

the quotient is 29.13., That is,

(The symbol"X" means "is spproximately equal to.")
We wrote the answer (correct to 2 decimal
places) es 29,13, rasther than 29.12, be-
cause 29.128 is closer to 29.13 than to
29.12.
Questions: What is the product 29.13 x 8.7?
Why is this product not equal to

253,429
-13.4 Exercises
1, Compute the following:
(a) 2.56 + 8.04 (g) -4.85 + -6.15
(v) 10.487 + 35.733 (h) 21.5 - (-7.6)
(c) 42.56 - 387.29 (1) 55.0 - 29.8
(d) 4.5 x 2.5 (1) 29.8 - 85.0
(e) 2.25 x 2.25 (k) 4.5 x .45
(f) -3.5 x .4 (1) -8.65 - 7.15
2. Compute the following quotients:
4,08 40,8 408 408
(a) 25  (® o (¢) 21  (d) 2&o

Explain why all the quotients in Exercise 2 are the ssme.
4, Compute the following quotients, correct to two

o decimal plaeces. (See Example 2 of Section 13, 3.)

199




- 324 -

%0.8 .9

(a) % () 35

,005

(v) 312,48 + 48,4 (e) .32
580

(¢) 32 (£) 875.42 + .17

5. During one month, Mr. Seles mskes the following de-

posits in his bsank:
$42.50, $97.28, $10.12, $106.77.
Whet is the totel of these deposits?

6. At the beginning of the month, Miss Lane's bank
balance wes $412.65. During the month she wrote checks
for the following amounts:

$5.79, $36.48, $10.20, $75.00, end $85.80
Also, during the month, she made one deposit of $85,80.
What was her bank balance at the end of the month?

7. (a) Find the quotient 7 + g .

(b} Find the same Quotient es in part (2) bty first
expressing esch number by a decimal fraction,

8. If the length of segment X is 3.75 inches, whet is the
length of segment V, if V = (1.8)X?

9. If a certain material sells for $.45 a yerd, how

many yerds can be bought for $5.40°7

13.5 Ratio and Provortion

At the right zre two sets of elements, A end B. The
number of elements in set , B
A is 2, and the number of

O elements in set B is 6
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We could say, by subtraction, that

the number of elements in b is 4 more than

the number of elements in A, There is

another common way of comparing the sizes

of the two sets; this is by stating that the number of elements
in B is three times the number of elements in A. That is,

3 + 2=206; or, what amounts to the same thing,

Here we have used the quotient g to compare the sizes of the
two sets. When used in this way, a quotient is called a ratio.
The equation above may be read:

The ratio of 6 to 2 is 3.

There is another way to write = 3 when you mean a ratio,

hv fe)l

It is:
6:2 = 3.
Notice that we may say:
The ratio of B to A is 3.

This means that if the number of elements in A is multiplied
by 3, you get the number of elements in B.

Pictured on the next page are two more sets, C and D, which
have 12 elements and 4 elements respectively. What is the ratio

of the number of elements in C to the number of elements in D?

Jdl



The ratio is l% (or 12:4); end since l% = 3, there are 3
times as many elements in C 8s in D. Or, if the number of
elements in D ie multiplied by 3, the result is the number
of elements in C.

Notice thet in the two exsmples above, the ratios (quo-
tients) ere equel. That is, g = l% = 2, This is true even
though the sizes of the sets in the two examples are not the
seme A sentence such ss

6 = 12
2 I

which shows that two ratios are equal, is callied s proportion,
The sentence is sometimes written es “6:2 = 12:4." 1In this

exsmple, we see that 6.4 = 2:-12. And, in genersl, two ratios

a

end g ére equal if 2d = be. Hence, the test for equal ratios

o

is the same as the test for equivalent fractions which was given
in Chapter 12, Section 4,

In terms of the sets being compearea, what does it mean
to ssy that two rstios are equal? 1In the examples above, it

means of course that in esch case one set is 3 times as large
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es the other

The stove disgram shows for each element in D, there are 3

elements in C Thus, the ,sets C and D compare (by means

of a ratio) in the ssme way as a2 set having 3 elements snd

2 set having 1 element.

Question: Can you draw g disgrem like the one above
which shows that for every element in A
there are 3 elements in B?
Exemple 1. 1In Congress, 80 Senators voted on s certain

bill, end it vessed by 3:1. How meny Senstors
voted for the bill?

This kind of language is often used, snd

what it meens is that the ratioc ot the number
voting for the vill to the number voting esgainst
the bill is 3:1. It d&es not mean thet only

3 Senators voted for the »ill, and only 1 against.
As a matter of fact, in this case 60 Senators
voted "yes" and 20 voted "no." Do you see why?

JERJﬁj Consider how 80 must be separated into two
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numbers having the ratio 3:1.
Example 2. Two line segments hsve been drswn., Segment
CD has 1ength-% inch, and segment AB has

length 2% inches. How do the two segments

compare?
2 2 2 2
- 2.2
21
= 5,

Thus, AB:CD = 5. The length of AB is 5 times
the length of CD,
Exemple 2 illustrates that the use of the word "retio" is not
restricted to the comparison of two whole numbers: we may
#1so speak of the ratio of two rational numbers. In genersl,

we say:

The ratio of 2 rationel numker ¢ to a rational
number d, d # 0, is the auotient % which may
also bte written c:d.

Exemple 3. Let g be the number of girls in & seventh grede

class, and let b be the number »f boys. If

Y

g = 12 eand » 16, what is the ratin g:b?

g 12 3

g:b'—?'=—]?6-~n.
The two sets compere in the same way as two

sets having 3 end 4 elements. For every 3

girls. there sre 4 boys.
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Notice elso that %.16 = 12,

Exesmple 4. Using the numbers from Exemple 2, what is the

ratio h-g?
b 16 U4 Y B
E-12°3% 3-.12 = 16

From 211 of the exemples thus far, the

following generslizstinn should te clear:
Exemple 5  Segment AB hes e length of 24 inches, end

segment €D hes a length of 8 feet. What

is the ratio AB:CD?

Be cereful! It is tempting to say that the

ratio is %% = 3, But this is false. Actuelly

the length of CD is grester than that of AE,

since 8 feet is certsinly longer than 24 inches

Since the length of CD is messured in feet, we

must a2lso express the messurement of AB in feet:

the length of AB is 2 feet. Then the ratio

AB:CD is
2 1
B8 T
The length of AB is % of the length of TD.

We could also chenge each messure to inches.
Then the ratio is 24:96 or 1:4. 1In comparing
quentities of the ssme kind by ratio, both

must be expressed in the same messure.
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13.6 Exercises

1. In the drawing below, two segments, AB and AC, have

been marked.

[aX X7

(a) What is the ratio of AB:AC?

(p) For what dilation D, would the image of seg-
ment AC be sagment AB?

(c) What is the ratio AC:AB?

(d) For what dilation D, would the imege of seg-
ment AB be segment AC?

(e) If r, is the ratio AB:AC, and r, is the ratio
AC:AB, what is the product r, .r,?

2. Find the ratio of the length of U to the length

of V if:

(2) the measure of U is 10 inches; the measure of
V is 5 inches.

(b) the measure of U is 5 inches; the measure of
V is 10 inches.

(c) the measure of U is 3 yards; the measure of
V is 18 inches.

(d) the measure of U is 1 mile; the measure of V
is 2000 feet.

(e) the measure of U is 3 % inches; the measure of
Vis 1l % inches.

(f) the measure of U is 1 % inches; the measure of

Vis 3 % inches.

J4b
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(g) the measure of U is 2a inches; the measure
of V is a inches. (2# 0)

3. Let g be the number of questions on & test. Let b be
the number of questions a student answered correctly.
Lrt, ¢ be the nuuber of questions answered incorrectly.
If a =20, b = 17, and ¢ = 3, find the following:

the ratio of b to a

(a

(

)
)
{c) the ratio of b + ¢ to a
)
)

o’

the ratio of ¢ to a

(
(e

L, If x and y are two rational numbers such that x:y = %

[}

the ratio of b to ¢
the ratio of ¢ to b

give five possible pairs of values for X and y.
5. If c and d are two rational numbers, which number

is greater if:

(a) c:d=% (b) c:d =32 (c) c:da=7 (d) cid =1

6. If a and b are two rational numbers such that % = %,

(2) by what number must you multiply b to get a?
(b) by what number must you multiply a to get b?

7. Sometimes comparisons are formed in which the num-
erator and denominator are numbers resulting from
measurements involving different units. For example,
on a map a scale factor such as "l inch = 50 miles"
means that a segment of 1 inch on the map actually

represents a segment of 50 miles in the country-
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side. Thus we have the proportional sequence of

fractions

‘5‘%, 155, 1530, ego, e
sc that a segment on the mep that measures 4 inches,
for exemple, actuslly represents a segment with
measurement 200 miles.

() On the map d=scribed above, a 6% inch seg-
ment represents a segment of what length?
(p) How lung = segment must be drawn on the map

tc represent a 225 mile segment?

Thus far we have used only positive numbers in form-
ing ratios. There are problems, however, in which
it is sensible to use negative numbers. For example,
in the drawing at the
right, a line has been
drawn in the plane, &nd
two points, A and B,
have been marked on the

line. The coordinates

of B sre (3,1). Notice

in "moving" from A to B,
the x-coordinate increases
by 2, which we indicate by
+2, snd the y-coordinate
decreases by 4, which we indicate by -4. Now if

we form the ratio
000
J38
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change in y-coordinate
change in x-coordinate

3

;‘2‘)
1ine iS _2 .

we get or -2, We say that the slope of the

Using this definition of slope, complete the

following activities.

(a) Mark the point (3,4), and through this point
draw a line whose slope is % = 2,

(b) Through the point (3,4), draw a line whose
slope is :% = -2,

(¢) Mark the point (-2,5), and through this point
draw a line whose slope is :g.

(d) Through the point (-2,5), draw a line whose

slope is 2
P 3 ‘
(e} Through the point (0,0), draw two lines, one
with slope % and the other with slope :%.

(f) Draw two lines, each with slope %. Draw one
line through the point (0,6), and the other
through the point (0,2). Fow do the two lines

seem to be related?

13.7 Using Proportions

When we say two segments are in the ratio 2:5 we
mean that if the measure of the first segment is 2, the measure
of the second segment is 5. We can also write this ratio as the

fraction g. Suppose we desire to have two boards with lengths

5
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in the same rutio as the segments. The first board is 4 ft.

long. How long must the second board be? If we designate the

lerigth by x then the ratio will be %. But this must be equal to
the ratio %. We thus write

2_4

57 X

To find the number X, we consider the equality relation of
two fractions, namely
2:x = 4.5
and solving for x find the solution 10. The second board must
be 10 ft.long.
Note also, that if any ratio is known, we csn form many
equal ratios; merely by multiplying the numerator and denominator

by the same number. Thus

3 6
2 _2x2 _ 4 2 _2x10 _ 10
5" %x2 T 10° 5 " 5x3 15
0 10

2 28

2 _2xt _ D

5~ 5% " 58

b b

Here % can be any national number positive or negstive but not
0. Why?

Exemple 1. A picture has measurements 7 inches ("length")
and 3 inches ("width"). If the picture is
enlerged proportionelly so that the new length
is 10 inches, what must the new width be?
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In 81l enlargements the ratio of the length
to the width must be proportional to the same
ratio in the original. The ratios of the

lengths to the width are [ and 22, Thus the
proportionality factor % must equal l%.
Solving % = l%, we find 7x = 3 . 10 or
X = u%. Therefore, the width of the enlarged
picture must be 4% inches.
Example 2. Solve the proportion
3 _ X
8~ 28

We sclve the proportion as follcws:

If 3 _ _x then by the rule of equal

8 28
fractions 3-:28= 8-x
8-x = 84
X = 101
2
3 _ 10%

In other words, = = —=%,
28

If we know the proportionelity constant and one member

of the missing ratio, we can write the proportion and solve for

13.8 Exercises

1. Using whole numbers only,
(a) write two proportions having the proportionality

constant i;
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(b) write two proportions with proportionality
constant l,

(c) write two proportions with proportionality
ccnstant 5.

In each of the following, find the number X so that the

ratios form & proportion.

() 2, &
9 X
(b) 2 x
6 12
() 9, 10
15 X
Solve the following proportions.
5 _ 15 100 _ 7 ¥ ox
() 5=% (@} ~7=x (6) 5=1
(b) 3-& (e) =% (h) 5:3 = x:15
() 332 (£) 3=2 (1) 15 = 7= (a #0)

The ratio of the number of boys to the number of girls is

the same in two different seventh grade classes., 1In one
class, there are 12 boys and 16 girls. In the second

class, there are 15 boys. What is the total number of

students in the second class?

On 8 certain mep there ere two segments drawn, one 7 inches
long and the second 10 inches long. If the map is enlarged
so that the first segment measures 25 inches, how long will

the second segment be in the enlargement?
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6. Two triangles are drawn below. The triangles are
similar, which means that the ratios of the lengths
of corresponding sides are all the same. All of the sides
in one triesngle have their lengths indicated in the figure.
In the other trisngle, the length of only one side has been
marked, Find the lengths, X and y of the other sides.

13.9 Meaning of Percent

In business and social 1life, one of most common ways
of making comparisonc is through the use of percent. 1In the
early colonial days this word was written as two words "Per
Centum" or "by the hundred." When people borrowed money or
goods they paid back in kind by giving e.g. so many dollars for
the use of 100 dollars, or so many bushels of corn for the use
of 100 bushels. ,The number 100 was s useful one since 10 was too
1ittle for most transactions and 1000 was too much.

Today we think of "percent" as a rationel number "one
hundredth." The numerical symbol "%" read "percent" is merely

another way of writing T%ﬁ or .0l1. If we change a fraction
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such as % for example, {o 2 fraction with denominator 100, in

this case T%%’ we note that % is snother way of expressing 40%.
Thus,
2~ 18- ho = kog = ko - s
Note thet 1 =232 = 100 - 55 = 100%.
Similarly 2 = 280 - 200 + 35 = 2008, 5 = 5C0%,
3 =18 = 1508, 3 =2 = 75%.

Example 1: In the picture below, there are 15 square regions,
and 6 of them have been shaded. What percent

of the squares sre shaded?

N

D

The number of shaded squares is 6; the total
number of squares is 15, So the rstio of the
number of shaded squares to the total number of
squares 1is Tg' And we can say that Tg of the
squares are shaded, However, from the discussion

sbove, we know that

2 = bog.  (iny?)
Therefore, 40% of the squares are shaded.

Example 2: Express % as a percent. We must change % to 8

frection with denominator 100. Hence % T%ﬁ;

i

8 x=3° 100, and x = 37.5,
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Hence g = é%é% = 37.5%. This is sometimes

rritten as 37%%.

Example 3: Find the percent equivalent of 6 We use the

5.
proportion é = X
5 100
5+ 100 =5 - x
5+« x = 600
X = §2- = 120,
?
Therefore, & = 120%.

Questions: 1In a ratio % how must a and b be related so
that the percent equivalent of the ratio is
greater than 100%? less than 100%? equal to
100%?

Example L4: What is the percent equivalent of 3.57

: 1 1
Example 5: Express 27 X 56 = 700
Question: Which is greater, % or %%?

Example 5 tells us %% is ?%5 and surely % > Having looked

L
200°
at a number of particular cases, we might consider the general

problemn of finding the percent equivalent of a ratio. Let 2 ve

b
any ratic (of course b # 0). Then to say that — = x% is to say
a _ X
b~ 100°
Then we have:

b + x =100 * a
_ 100a
X==
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8 _ 100a
Otherwise stated, § = _F_—%‘
13.10 Exercises
1. {a) 50% is +he percent equivalent of %. Write four

other ratios for which 50% is the percent equivalent.

(b) Write five different ratios for which 25% is the
percent equivalent,

(c) Write five different ratios for which 150% is the
percent equivalent.

(d) Write five different ratios for which 100% is the
percent equivalent.

(e) Write five different ratios for which 200% is the
percent equivalent.

2. The questions in this exercise refer to the figure below.

A ¢ B

Al cC B

C|ClA

C A

(2) What percent of the squares have been marked "A"?
(b) What percent of the squares have been marked "B"?
(¢) What percent of the squares have been marked "C"?
(d) What percent of the squares have no mark?
(e) What is the sum of the percents in questions (a),
(b), (c), end (d)?

3. Give the percent equivalent of each of the following:
(a) .5 (v) .50 (c) .25 (d) 2.5 (e) 1.5
(f) 1.25 (g) .17 (h) 1.17
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L, In the table below, esch ratio is to be expressed in the
form %, os a decimal fraction, and as a percent. The
first row has been filled in ccrrectly. Fill in &1l the

bianks in the remainder of the table.

Ratio % Decimal Fraction Percent
= .50 50%
1
IT

.75
20%
.60
.20
1
8
87%%
4
5
375
hog
1
hil)
90%
1
1
.70
.05
3
10
1%
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5. As you recall from Section 12.20, somz ratios such as
% cannot be expressed as terminating decimalg, but can
be approximated to any desired number of decimal places.
How can such a ratio as % be expressed as a percent?
The question is enswered in the same way that 21l other
problems concerning percent equivalents have been an-

swered. Study the steps below:

1. _x_
3 ~ 100
3+ x=1°100
3+ x = 100
x=;g_g=33%

Therefore. the ratio %»may be expressed as 33%%.
We may also write % ® 33% where ® is read "is approx-
irately equal to." Similarly, a better approximetion
is % ® 33,3%.
Give th» percent equivalent of the followirg ratios:

) 5 ® g ()2 (@

13.11 Solving Problems with Percents

It is common to see advertisements with statements such
as
SAIE: 15% OFF ON ALL ITEMS!
Suppose that an item that -normally sells for $25.00 is included
in the sale advertised above. What should the sale price be?
According to the advertisement, 15% of 25.00 should be subtracted
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from the list price. So the problem is thal of finding 15%

of 25. Since 15% means T%%; and "of" means multiply, we find

.15 x 25.00 = 3,75. Since 25.00 - 3.75 = 21.25, the item should

sell for $21.25 during the sale.

In the following examples, we solve some other problems,

by use of percents.

Example 1.

Example 2.

Exemple 3.

On a test having 20 questions, a student
answered 16 of them correctly. What percent
of the questions did he answer correctly?
That is, what should his percecat score be?
The ratio of the number of questions answered

correctly to the total number nf questions is

16,
20°

16 80 _
50 = To0 = 50

80% of the questions were correctly answered.

On the same test of 20 questions, another stu-

dent missed 3. What is his percent score?
Since the student missed 3, he answered 17

correctly. The ratio

Number correct 17 _ 8 _ .
tTotal number is 20 ~ 100 ~ 8%,

the student score.

In a certain election, 70% of a town's
registered voters actually voted. If

3,780 people voted, how many registered voters
are in the town?

We know that 70% is .70. We also know that if

there are X registered voters .70° x is the
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number that voted. Thus .70 * x = 3780 or
X = é%%%' By division we find x = 5400. Check
by showing(.70) (5400) = 3780,

Example 4, A major league ball player has been at bat 82

times and collected 26 hits. What is his percent

number of hits is
number of times at bat

of hits? The ratio

gg or %i. We find the percent equivalent from:
the proportion by changing %% to
%% = T%G a decimal fraction to
1300 = 41x or  the nearest hundredth:
31.7 * x 3 = .317
He has hit .32 = 32%

approximately 31.7%.
In baseball language this percent expressed to a

tenth of a percent (I% of 1éo or 10%0) is called

the player's "batting average". The player's
batting average in this problem is .317.

Example 5. What is %% of 2807
Important! The answer is not 210. (Don't confuse

%% with %.) %% is equal to

3’..2—1.-_‘:..3
T  Too Looe

Then E%‘b‘ x 280 = 355 = 2.10.




- 345 -

13.12 Exercises
1. Find the following:
(a) 1% of 500, 5% of 500, %% of 500, 1% of 500,

L of 500, g of 500, 10% of 500, 100% of 500,

(b) 14 of 150, 10%.0f 150, %% of 150, L% % of 150,

(¢) 1% of 24, 28% of 24, 3% of 24, 1% of 24,
% of 24,

(a) 1% of 860G, .5% of 8000, 1.5% of 8000, U4,5% of
8000, .5 of 8000,

(e) 1% of 50, 100% of 5C, 200% of 50, 2uUOZ of 50,

(f) 1% of 92, 100% of 92, 300% of 92, 350% of 92.

2. In a high school with 2600 students, 35% of the students
are freshmen. How many students are freshmen?

3. In the same high school, there are 390 seniors. What
per cent of the school's students are seniors?

L, Suppose the town of Elmwood has a population of 4000
and the town of Springfield has a population of 6000.
Complete the following statements.

(a) The ratio of Elmwood's population to
Springfield's population is .

(b) Elmwood's population is ____% of
Springfield's population.

(¢) The ratio of Springfield's population to

Elmwood's population is .

ERIC -l
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(d) Springfield's population is ___ % of
Elnwood's populaticn.
5. Complete the statements in the following two columns
in the same way the first statement in each column has

been completed.

20 = £8 - 1o. 20 1s 504 of 40.
ho = __ ° 20. 4o is __ % of 29,
20 = __ - 25. 20 is _ % of 25,
25 = __ - 20. 25 1s _ % of 20,
500 = __ - 4o0. 500 is __ % of 400.
hoo = __ - 500, 400 is _ % of 500,
8 =__ - 80, 8 is _ % of 80,
80 =__ .8, 80 is _ % of 8,
16 = __ - 80, 16 1s _ % of 80.
80 = __ . 16, 80 1s _ 4 of 16,
b2 = . ko 4.2 1s __ % of h2.
ho = - 4,2, h2 is % of 4.2,
1.8 = _ - 180. 1.8 1s _ % of 180.
180 = _ - 1,8, 180 is _ % of 1.8,
6. In a basketball game, a high school team scored 80
points.

(a) If David scored 18 of these points, what per cent
of the team's points did he score?
(v) Bill made 27%% of the team's points. How many

Q points did he score?
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{(c) The number of points David scored is what per cent

of the number of points Bill scored?

7. In another game, David made 40% of the team's points., If
he made 22 points, how many points did the entire team
make?

8. (a) 22 is 40% of what number?

(b) 89 is 50% of what number?
(¢) 12 is 35% of what number?
(d) 60 is 150% of what number?
(e) 7 is 1% of what number?
(f) 42 is 3% of what number?
9. In a certain state, there is a 4% sales takX. How much

sales tax must be pald on purchases of the following

amounts?

(a) $40.00 (d) $3.25 (g) $3500.00
(v) $15.c0 (e) $1.00 (n) $3499.00
(¢) $12.50 (£) $10.00 (1) $9.99

10. Suppose & bank pays 43% interest per year on savings
deposits.
(a) How much interest should a deposit of $2000 earn in
one year?
(v) How much interest should a deposit of $2000 earn in
two years?
11. If the bank in Problem 10 pays interest every six months
it will pay only half as much, since 6 months is 1 of a
year. (It is the annual interest rate which is 4%%.)
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(a) How much will $1000 earn for six months?
(b) How much will $2500 earn for six months?
(c) How much will $2000 earn for three months?

(Hint: 3 months is % of a year)
From Exercises 10 and 11, we see that simple interest can
be computed from the formula

i =peret,

where i is the interest, p is the amount of money deposited,
r is the rate of annual interest, and t is the time in
years.
Compute the interest for:
(a) $500 at 4% for 1 year,
(v) $500 at 4% for 6 months,
(c) $500 at 4% for 3 months,
(d) $1200 at 4%% for 1 year,
(e) $1200 at 43% for 6 months,
(f) $1200 at 4%% for 3 months,
(g) $1500 at 5%% for 2 years,
(h} $1500 at 5%% for 1% years,
(1) $750 at 4.2% for 1 year,
(3) $750 at 4.2% for 6 months,

Mr. Smith has kept a deposit of $1500 in a bank for one
year, and the bank pays him $37.50 interest; What annual
rate of interest is the bank paying?

Complete the following sentences:

(a) 33%F of 3900 is ]
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(v) 20 is ___% of 30.
(c) 30 is __ % of 20,
(d) 20 is 18% of _ .
(e) 20 is 40% of __ .
(f) 108 is 40% of ___,
(g) 23% of 160 is ___,
(h) 2.75% of 160 is .
(1) 18 1s 665 % of __.
(5) 16%% of 66 is
(k) 30 is __ % of 36.

13.13 Presenting Data in Rectangular, Circle, and Bar Graphs

In Chapter 5, a study was made of collecting and
representing statistical date in tables and certain graphs. 1In
this section we will construct certain other graphs which give a
vivid pictorial summary of the data we wish to present. It
might take considerable study to glean the same summary from
a table presenting the data in numerical form. Thus popular
ways of presentation are the rectangular graph, circle graph,
and bar graph.

A seventh grade class made a survey of their junior
high school to find the proportional parts of the student
body that used various methods of travel to school.

When they had gathered the data they first recorded them

in & table as shown here.
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Methods of Transportation to School Used by Students.

Method Number of Students Percent of Students
Walk 631 43
Auto 220 15
Bus 455 31
Bicycle 161 11
Total 1467 100

The third column was obtained from the second column by com-~
puting the percent each entry was of the total mumber of students.

To construct a rectangular graph, the length of a rec-

tangle was divided into 100 parts (a2 good length is 10cm or
100mm). The rectangle was subdivided into rectmngular sections

at 43, 58, and 89 parts from the left, and marked as shown.

Methods of Transportation to School Used
by Students in a Junior High School

Auto- Bi-
Walk mobile Bus cycle
L3% 15% 31% 11%
0 L3 58 89 100

To make a circle graph for the same data, it is nec-

essary to represent 360O es 100%4. By proportion we find that

one percent,

3%5 = 1%5' or x = 3.6,

Hence 3.6 degrees represents one percent., The percent column

O
]ERJ(j in the table above can now be changed intc a degree column,
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by multiplying by 3.6.

Percent Degrees

L3 154,8

15 54,0

31 111, 6

11 _39.6
Total 100 360.0

We draw a circle, and with the center of the protractor at the
center of the circle, we construct successive angles of
approximately 155°, 54°, 111.5° and 39.5°,

The following graph results:

Methods af Transportation to School Used by
Studentsin a Junior High Schaol

Automobile
15%

Bicycle

11%

To construct a bar graph we draw bars, all the same width,

elther horizontally or vertically, the length of each bar

O
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representing the number in each entry, or the percent in each
entry. The space betweer: each bar should be the same width
as a bar. In the graph below (& horizontal bar graph), along
the horizontal axis a scale of 50 units was selected because
the greatest category is 43%. The scale on the axis shows 2%
for each division. The bars are then drawn parsllel to this
scale of length given by the table., Each bar is labelled at
the left.

Method of Transportation to School Used by
Students in a Juniar High School

Walk 43%
Automobile
Bus
Bicycle
=620 30 0 50
Percent of total (1467)
13.14 Exercises
1. (a) About how many times as many students came by bus as

by automobile?

(b) About how merv times as many students walked as came
by bicycle?

(¢) What means of travel was used by the smallest number
of students? the largest number?

(d) Which type of graph was the most effective in presen-
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ting least and greatest percentages? for
comparing the percentages?

2, (a) Obtain information from members of your class on their:
means of travel to school.

(b) Gather data from your class on: (1) how many go home
for lunch; (2) how many tring their lunch; (3) how
many purchase their lunch in the school cafeteria;
and (4) how many are in none of the three preceding
groups (record this as "other").

3. Present each set of data tabulated in Exercise two by
means of graph. Use a rectangular, circle or bar

graph.

4, Complete the following table, following the procedure in

Section 13.13, and construct a rectangular, circle and

bar graph.

Distribution of Marital Status of Female Workers in a Factory

Status Frequency Percent Degrees
Single 180
Married 220
Divorced 25
Widowed _15_
Total 500

13.15 Translations and Gioups

In preceding chapters we studied translations of a set
of points on a line onto itself; of a set of points on one of

two parallel lines onto a set of points on the other; of a set

409

of lattice points in a plane onto itself. 1In this section we
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extend translations so that they may have as a domain the set
of points in a plane whose coordinates, in & given coordinate
system, are reational numbers,

Consider the transletion, call it t that maps 0(0,0) onto
A (2%, 1%). What is the image of
B (0, 13) under t? Name it C.
What kind of figure is OACB? Why?
The coordinate rule of t is
(x,7) — (x + 25, y + 111I)' Is t

a8 one-to-one onto mspping? Why?

Does t have an inverse? Let us name
it t7!, The -1 denotes an inverse

mapping, so t™ is read "the inverse

of t" or simply "t inverse," In t}
what is the image of A? of C? of 0? The rule for t~
is:  (X,y) —(x - 2%, y - 121T)

Do you think that every translation of the set of points
with rational coordinates in & plane has an inverse? If a
translation has rule (x,y) —= (x + 2, y + b) where x,y,a,b
are rational numbers, what is the rule for the inverse of this
translation?

Now consider translation t' that maps (x,y) onto

{(x + 3%, y - %). Under t', what is the image of A

(2%, 1%)? Is there a single translation that maps O onto this
image? What is its rule? Thus, there is a tronslation which

is the composite t'ot, and as you recall, we read it "t!

“ollowing t.

u. | ' | 360
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In particular, what is the composite of t with its inverse

t'l? It would seem that it is the identity translation.

In summary, if (x,y)-—-—m—+>(x +a, y + b),
then (x5¥) >(x -a, y -b).
If (x,y)—E>(x + ¢, y +d),
t10¢t
+hen (x,y)——>(x +a+c, y +b +4d),
and (x,9) 52t (7).

You have probably suspected that the set of translations we have
been discussing, together with composition, have the properties
of a group. Indeed they do, and you are asked to investigate

this question further in the following set of exercises.

13,16 Exercises

Assume that all translations in the exercises have for
their domain (and range), the set of all points in a plane with
rational coordinates in a given coordinate system.

1. Is the composition of two translations an operation?

Why?

2. Let T represent the set of all translations and let "o"
denote composition of mappings. List the properties that
should be proved for (T,o0) that will support‘the claim
that (T,0) is a éroup.

3. Prove that every translation has an inverse in (T,o).

4, Prove that (T.o0) contains an identity translation.
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5. Prove that (T,o0) has the associative property.
6. Prove that (T,o0) is a commutative group.
7. Let translation t map (x,y) onto (x + %, y - 2%).
Find the rule for each of the following:
(a) tot (c) tototot
(b) totot (d) If t is denoted t', tot is denoted
t?, totot is denoted t*, and so on,
does the set {t}2t%*,+3,t*,..) with o
form a group? If it dozss not, ex-
plain in what respect it is
deficient.
8. Using the data in Exercise 7 find the rule for each of
the following:

(2) t7

(b) t~'°t™ (denoted t™)
() t7%t7'%"? (denoted t™2)
(d) Does the set (t™ ,t™,t™,...) with o form a group?
9.  Does the set (... t=,t,t7,1,t,t° t°, ..} with o form
a group, where i is the identity transformation? If
not, in what respect is it deficient?
*10. Show that all translations having rules of the form
(x,y) == (x + pa, y + qb), wherc a and b are fixed
rational numbers, and p and q are integers, form & group

ot

with the operation "o" (compeosition of mappings ). (Difficult. )
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13.17 Applications of Translations

As you might expect, translations have been studied
because they are useful in solving certain types of problems. In
this section we examine two of these types, both found in science.
One problem introduces forces and the other velocities.

We first examine & problem involving forces.
Let P, in the diagram below, represant a billiard cue ball
which is about to be struck by two billiard cues at the same
time. We want to know how the combined effect may be achleved

with a single billiard cue.

o'l

oy

In considering the effect of each cue we must know both
the magnitude and the direction of the force which is applied to
the ball by the cue. We represent the forces (not the cues) in
the diagram by the line segments a and b,vtogether with an arrow
at one end of each segment. The length of each segment rep-
resents the magnitude of the force. In our diagram one inch
represents a magnitude of 5 pounds.) The line in which the
segment lies together with its arrow, indicates the direction
of the force. Thus, one force is represented by line segment

: O -
FRIC & directed, at P, as indicated. We denote this force by a.
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The other force, with direction and magnitude as indicated, is
represented by line segment b, We denote this force by 3.

Since the length of a is one inch, a has a magnitude of 5 pounds.
Line segment b is 2 inches long so that the magnitude of b is

10 pounds.

We see, then, that a force is determined by a magnitude
and a direction. A translation is detemined in the same way.
For this reason we might expect to be able to use translations
to solve our problem. Our expectations are realized, for
"adding" forces is done by composing translations.

Now let us "add" the two forces & and b described above.
To do this we think of P as a point and a and B as translations.
Then we see, in the diagram
at the right, that Q

™
\o'b
0l

Q-—b>R; R < P

boag De a

Hence P

L 1]

b o & is the translation that corresponds to the "sum
of forces. That is, the effect of a and 5 together will be
to exert a force with a magnitude represented by PR in the line
of PR and in the direction from P to R. This force is called

the resultant of forces a and b. Going back to our original
problem, we see that to echieve the same effect with a single

cue the cue ball would have tc be struck with a force of 11&
pounds. Also, the cue would be sighted along PR in the direction

from P to R.

364



- 359 -

-

Question: Does 2a0b = b o a? Why or why not?
The second application of translations is to problems involving
velocity. Our problem will then be to "add" velocities in the
same sense that we, K "add" forces. We can reinterpret our problem
of "adding" forces 2 and b by thinking of them as velocities.
Then a can represent a speed of 5 miles per hour in the direction
indicated in the diagram, and b can represent a speed of 10
miles per hour in the direction indicated in the diagram. Here
again the lengths of 2 and b represent the magnitudes (speeds in
miles per hour) of the velocity, and the line of the segment, with
an arrow, represents the direction., Here we might be solving a
problem such as the following:
A toy boat is propelled by its engine with
velocity b. A wind is blowing with velocity
;. In what direction, and with what speed,
does the boat actually move? (That is, with
what velocity does the boat move?)
The answer is found in exactly the same manner as "adding"
forzes. The answer for this problem then, is: the boat moves
at the rate of 11% miles per hour in the direction of PR as
indicated by its arrow.
We end this section
with another example.

Suppose & boat actually

o}

moves in the direction of

2 (shown at the right)

1with a8 speed of 20 miles

dbo
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per hour, but its
propeller and engine
operate to make it move
in the direction of o
(shown at right) with a

o}

speed of 15 miles per

hour. The difference

is due to the wind. 1In

what direction is the wind
blowing and with what speed?
Note that a is 2 inches long

ot

and 3 is 1% inches long.
Then the scale in the drawing

is 1" = 1C mi.

To solve this problem
think of & and b as the
translations corresponding
to the velocities and P as the translation corresponding to the
velocity of the wind. Since a is the composite of 3 with X

-t -t

we have: b o x = 3.

We solve for ; and find ; = B '10 3. This guldes us in solving
the problem., Study the diagram and be able to explain how

it was made., In looking at the diagram, start at P. How long

is segment x? What is the speed of the wind?
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13.18 Exercises

L. The propeller and engines of a ship are set to propel it
on an easterly course, at the speed of 20 miles per hour.
The wind is moving towards the north (coming from the
south) at the speed of 10 miles an hour. Make a diagram
of the actual course, i.e. the velocity of the ship. Using
ruler and protractor, find the actual speed and 'ind what
angle the course makes with the line pointing to the north.
(Use the scale: 1 inch = 10 miles.)

Note: We neglect the force of the flow of the water, called

"drift."

2. Answer the same questions asked in Exercise 1 for each of
the following cases,

(2) Intended course of ship is northeast; speed is 15
miles per hour; the wind comes from the west at 30
miles per hour, (Use the scale: 1 inch = 10 miles.)

(v) 1Intended course is northwest; speed is 18 miles per
hour; the wind comes from the southwest at 24 miles
per hour. (Use the scale: 1 inch = 6 miles.)

(¢) The ship's intended course 1s southeast; speed 15
miles per hour; the wind comes from the northwest,
at 5 miles per hour. (Do you need a diagrem for this
problem?)

In Exercises 3 - 7 use the segments shown below to rep-
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resent forces. The scale we used to draw them is 1 inch = 10

pounds,

3. Suppose forces 2 and b are applied to an object. Use a
diagram to find the resultant and compute the magnitude
(number of pounds) of the resultant force.

4, Proceed as in Exercise 3 given:

(a) forces 2 and ¢ are applied together.
(o) forces b and ¢ are applied together.
(c) 2,b, and ¢ are applied together.

5. Suppose force B is applied and ¢ is the resultant. Find
the force X that was applied together with 3, and compute
its magnitude.

6. Suppose force b is applied and ¢ is the resultant. Find
the force X that was applied together with B, and compute
its magnitude, .

T Suppose E is applied and 2 is the resultant. Find
the force X that was applied together with ¢ and compute
its magnitude.

8. Suppose two forces are applied and the resultant leaves

the object in its original position. What must have been

true of the two forces? 368
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13.19 Summary

1. If X is any rational number, then Dx is a dilation which
maps each point into a point x times as fer from the origin.
2. Decimal fractions may be used in finding sums, differences,
products, and quotients of rational numbers.
3. Two sets may be compared by means of a ratio. The ratio
of & number X to a number y is the quotient g; also
written as x:y. (It is understood that y # 0.)
If §-= r, then x = r-y.
a.

L,  If two ratios, 2 and 22,
b1 b2

are related so that

S
u
S

then the ratios are said to be in proportion. An equation

of the form %‘ = %3 is called & proportion.
1 2

5. The ratio T%ﬁ is also written as "e%" and read "a percent."
Every ratio can be expressed in the form %, where a and
b are integers, or as a decimal fraction, or as a percent.
Many mathematical problems occuring in everyday life are
expressed in the language of percents,

6. If T is the set of all translations of form (x,y)——JL—>
(x + a, y + b), where a2 and b are rational numbers, and
if 0 is composition of translations, then (T,°) is a

commutative group.
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13.20 Review Exercises

1. (a) What is g of 182
(b) What is 15% of 200%

(c) What is .35 x 6509

2. If a 124 tax must be paid on $3500, how much tax must
be paid?

3. During a sale, a store reduces all prices by 20%#. What
is the sale price of a television set which normally
sells for $220.00%

L, In & school, 35 of the 225 boys go out for basketball,
What percent of the boys 1n the school go out for basketball?

5. U of the girls in the school are cheerleaders, and there
are 8 girl cheerleaders. How meny girls are there in the
school?

6. A bank pays interest at an annual rate of 4%%. How much
will $4000 earn during a 6-month period?

7. Compute the following:

(a) 8.875 + 44,327 (e) 5.6 x 8.75
oy 6.138

(b) 102.54 - 87.39 (f) 75

(c) 21.8 - 39.3

(@) (2.3) x (2.3 x 7.5) (g) $:33°

8. In a certain city there are 4200 Democrats and 3600
Republicans. What is the ratio of Democrats to Repub-
“licans? (Express the answer as an irreducible fraction.)
Then fill in the following blanks so that a true state-
ment results:

For every _ Republicens, there are Democrats,
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9. In a student council, there are 24 members. With all
members voting, Jim won the presidency by & 3:1 vote,
How many voted for Jim?

10. Solve the following proportions:

[TV

(2) =2 (v)

£ Ve

() 2-5 (@ 2-%

—Jjro

11, Write the coordinates of the image of each of the
following points under the dilation

D.s
s

a2 2), B (-8, c( 4, D09,

E (9,0), F (-1, 1).
12, Let t be the translation in Q X Q which has the following

rule:

(x,y) —2>(x + 2 ¥ - B)
(a) What is the rule for tot?

)

(b) What is the rule for t ?
(¢) What is the rule for £t (the inverse of t)?

(d) What is the rule for t™ 2
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CHAPTER 14
ALGORITHMS AND THEIR GRAPHS

14,1 Planning a Mathematical Process

Many of you have seen the humorous sign

PLAN AHEAI

The humor, of course, is in the fact that the painter did

not heed the advice he was giving to others. To avoid crowding
the letters on future signs, the nov;ce sign painter could re-
gquest that his supervisor provide detailed instructions for
painting the words PLAN AHEAD on a piece of cardboard of a
given size, The instructions probably would be something like
this:

Use a ruler to find the length of the board.

Count the number, n, of letters and blank spaces nheeded to

print the message.

Divide the length of the board by the number of spaces

needed to find the length of each space,

Mark off n spaces on the board -- each of the required

length.

Paint the letters in the appropriate spaces,

If one blank space is to precedethe "P," one is to be be-
tween the two words, and one is to follow the "D," what is the
number of letters and blanks to be for the sign? If the length

Q@  of the sign is to be 12 inches, how long will each space be?
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Are the instructions clear and complete? If not, what modifica-
tions should be made?

Lists of instructions such as those used by the sign painter
occur frequently., The instruction manuels that come with almost
any toy or machine, and the recipes your mother clips from news-
papers and magazines are examples of such lists. Instruction
lists occur also in mathematics. For example, you are familiar
with the following instructions for averaging a set of test
grades:

Add all grades in the list and obtain the sum S,

Count the number, n, of grades in the 1list.

Divide S by n to determine the average of the n greades,

A 1ist of instructions or a recipe is useful only if the
process described finally comes to an end, Otherwise, no sign
would ever be finished, no dish prepared for the table and no
average recorded on your report card. In mathematics, a list of
instructions describing a process which eventually comes to an

end is called an algorithm or algc¢rism after the Latin name of

the Arab mathematician Mohammed al Khowarizmi who collected many
algebraic recipes in a book entitled 1lm al-jabr wa'l mugabelah
(c. 800).

Algorithms occur in all areas and at every level of mathe-
metics. You already know and use a number of algorithms. The
algorithm for adding two two-digit numbers and the algorithm for
dividing one number by another are familiar to you., Algorithms
are especially useful in work with electronic computers., Although

computers can perform mathematical operations at high
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speeds, they must first receive a detailed sequence of instruc-
tion; that 1s, the computer must be given an algorithm,
Algorithms may be written out as in the preceding example,
recorded on magnetic tape, or represented in a variety of other
ways. One procedure for recording the sign painter's algorithm
would be to write the instructions on individual index cards.
If the cards are placed in a pocket or drawer and reassembled
at a later time, trouble may develop. Suppose the sign painter

reassembled the cards as in Figure 14.1.

Count the letters and blanks needed.

Paint the letters,

Measure the signboard,

Divide the length of the signboard
by the number of spaces needed.

Mark off the necessary number of
spaces on the signboard,

Figure 14.1
What sort of a sign might be produced if these instructions were
followed? Do you see that not only are the instructions impor-
tant, but their arrangement is important as well?

Q We can avoid this difficulty elther by numbering the cards
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or by indicating with arrows the sequence in which the steps

are to be performed, as in Figure 14,2,

Count the letters and blanks needed,

Paint the letters.

Start { Measure the signboard,

Divide the length of the signboard
by the number of spaces needed,

Mark off the necessary number of
spaces on the signboard,

Figure 14,2

The picture of the sign painter's algorithm with separate in-
structions recorded in boxes and the boxes Jjoined by arrows is,

in a sense, a diagram or a graph of the algorithm. Graphs of

algorithms are called flow charts. Two things should be apparent

in every flow chart -- the instructions themselves, and the
"flow" or sequence in which they are to be performed,

Since flow charts are useful for recording algorithms, and
since algorithms are essential in machine computation, mathema-
ticians who prepare programs for electronic ccmputers have
developed a standard form and language for the construction of

o flow charts. Facts and equipment important for specific proces-

ERIC )
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ses are recorded in data boxes like this:

ruler, pencil,
cardboard,
paint, brush

These data boxes or cards are used to record the process input
-= the infcrmation or equipment necessary to carry out the pro-
cess. Is the card above an appropriate input for the sign
painter' s flow chart?

Instructions to be carried out or operations to be per-

formed are recorded in operation boxes like these:

Measure the Divide the length of the
board by the number of
spaces necessary to de-
termine the length of
each blank and letter,

signboard.

Information obtained by means of the process described in

the flow chart is recorded in output boxes like this:

Satisfactory sign.

Note that each type of box has a characteristic shape.
Using these conventions, try to complete the flow chart

for the sign process in Figure 14,3,
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//%encil, ruler Count
~—3| cardboard, -——ﬁ spaces
paint, brush required

— € Paint the je——

——-\\~d letters

Figure 14.3

While both the content and sequence of the instruction
boxes are important, it is often possible to give instructions
in several ways, each producing the same result. Is there any
rearrangement of the instructions in the PLAN AHEAD flow chart
that still would produce an acceptable sign? It is possible
also to expand the instructions within one of the boxes, devel-
oping a flow chart within a flow chart. For instance, we could
replace the box which commands, "Count the number, n, of letters
and blanks needed to print the message," by the sequence of three

operation boxes shown in Figure 4.4,

Count the number of letters
needed for the message,

i

Count the number of blanks
needed for the message,

l

Find the sum, n, of the
numbers in the preceding
two boxes,

Figure 14,4
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What other such expanslons can you suggest to make the directions
clearer?

The flow chart is a useful device for describing complicated
algorithms pictorially. It has primary applications in program-
ming for computers, but it is also of use in outlining a wide
range of step-by-step procedures. A few of the uses of flow

charts are illustrated in the following exercises.

14.2 Exercises

1. Try to construct a flow chart of the main steps describing
(a) how you got to school today ;
(b) your daily schedule at school;
(¢) how to draw a circle with compasses or a string and
pencil;
(d) how to find the average of two numbers ;
(e) how to find the factors of a number;
(£f) a game you play.
Does the order of the boxes affect the chart you have con-
structed?
If ;ossible, show two ordering: that produce the same result,
2., (a) Do the directions in your sign painter's flow chart
apply only to the PLAN AHEAD sign ?
(b) Is it possible to use the same chart to produce differ-

ent signs by use of an additional data box?

r/fMessage:
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If so, where should this data box ke placed in the
chart?
(c) wnat would the message boxes be for painting
(1) CAUTION: RUTABAGAS
(2) U.N.C.L.E.
(3) (your name)

(d) What number of letters and blanks is needed in each
sign suggested in (c¢)?

(e) 1If you have a signboard 24 inches long, how long will
each letter and blank be in each of the three signs?

Classify the following as input, output, or operation boxes:

(a) | Add. (e) | Skip school,
{v) ( Seven, (f) /ﬁ school
‘ skipper.
c) /Apples and

( Oranges (g) | An hour after
school for two
weeks,

(d) 2’ 3) 7’ llo -—\--—-—-

If possible, arrange the following cards in order to give a

flow chart that makes sense.

(a) (ﬁall Shoot Aim Basket Score
ot/ Mgy
(b) (Needle Sew rﬁiread Dress cut (bloth
N
(¢) (Ba11] (Glove] [Caten| [Tnrow] (Bat] [owt| [mit
.

Try to write a flow chart for multiplying two fractions which

can be followed successfully by someone who doesn' t know
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what a fraction is.
6. Write a flow chart for averaging two numbers.
T. Can you write directions for the process of opening a com-~

bination lock? You might begin with

.—-—)@mk, combination.

14.3 Flow Charts of Branching Algorithms

Turn 2 full turns —
to the right.

w

In the preceding section you were introduced to flow charts
of simple algorithms. The flow charts consisted of input, out-
put, and operation boxes that were arranged in a definite order.
Often in flow charts of more complicated algorithms, you will
find a fourth kind of box. This new box is called a decision

box, and usually looks like this:

( =
Yesl

Decision boxes contain questions. In flow charts of mathema-

tical processes, decision boxes usually ask whether two quanti-
ties are equal or whether a certain inequality holds between
them,

For example, the decision box

( Is a < b? )-——‘-)No
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asks whether the number a is less than b. The outcome of a
decision box is "yes" or "no." Often decision boxes are used
to create "forks" or branches in a flow chart. The chart may

indicate that one set of instructions is to be followed if the

" " (]

answer is "yes," and a different set if the answer is "no.
As an example of a flow chart that includes a decision box,
consider the trial and error procedure in Figure 14.5 for

painting the PLAN AHEAD sign.

Paint, cardboard,

brush, ete. €«

»
Paint the sign,

A 4 i d
Is the sign —>| Discard the

(Aacceptablg? ) No unsatisfactory
sign.
Yes
W

Display the

sign,

Figure 14,5

Of course, there is no guarantee that the process ever will re-
sult in an acceptable sign; hence, the chart is not the flow
chart of an algorithm.

For an example of a bona fide algorithm, which includes a

decision box, take the usual method of rounding off a decimal to
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the nearest hundredth. To round off, say, .abcd, where a, b, ¢,
and d are digits, we consider only the thousandths digit ¢. If
¢ < 5, then .abed rounded to hundredths is simply .ab. If ¢ >
5, then .abcd rounded to hundredths is .ab + .0l. In flow chart
form this algorithm is displayed in Figure 14,6,

-+Eabcd —| Is ¢ < 5?‘)__1\10__,_,@
a®

Yes

¥ .ab

Figure 14.6: Rounding off a Decimal to
the Nearest Hundredth.

There are, of course, other more refined procedures for round-
ing off decimals., However, the one given above is used by most
students.

Algorithms with two or more branches occurred frequently
in previous chapters. The algorithm for deciding which of two
integers is the greater is an algorithm with several branches.

(See Figure 14.7.)

Integers a and b,

5

Compute a + (-b).

L 4
Is a + (-b) Is a + (-Db) -
(positiVe? Ng——’( negative? J-Ne—p[2 = b

Yes Yes

h 4 A 4

[3_2‘3; |b > a.l

Figure 14.7: Determining if a > b, b > a, or a = b,
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b,c € Z

A 4

Determine
o], lel

I
No

b+e=
~(1o]+]c))

/ Yes No Yes

e =

“(Jel-ToD)

Pigure 14.8: Adding Two Integers.
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Similarly, the algorithm for computing the sum of two
integers is a multi-branch routine, (See Figure 14.8) While
the preceding flow charts may seem to you to he of little prac-
tical value, once the algorithms they represent have been
learned they can serve a useful purpose in checking a particular
computation or in locating an error in procedure, For example,
if in adding -8 and 36, a friend obtained the sum 44, you could
easily point out his error by referring to the flow chart
(Figure 14,8), With b = -8 and ¢ = 36, the only output with
value 44 is |v| + Je]. Working backwards from the output box

b +c=|v|] +!~|, we see the following:

‘Is c > O?)
\\\\EE:

Since ¢ = 36 > 0, and since the output |b| + |c| is along the
"Yes" arrow, the error must have occurred in an earlier cell,

Again working backwards, we see:

Since b = -8 < 0, the error very probably occurred here,
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Once the location and nature of the error are determined,

it is a relatively simple matter to repeat the routine avoiding

this same mistake,

14,4

1.

Exercises

Which of the following
(2)
(v)
(c)

Write a flow chart for

Is it raining?
3 +2
3+2 =a

Write a branching flow
set of three integers.
W~ite a flow chart for
ing order.

Write a flow chart for

ing order and removing

might appear in a decision box?

(d) It is raining.
(e) a>0
(f) a+5

computing the product of two integers,

chart for finding the largest of a

arranging three integers in increas-

arranging three integers in increas-

duplicates, if any.

Write the flow chart of an algorithm for finding a single

heavy ball in a set of

eight balls.

Use flow charts to locate the errors in the following com-

putations:

(a) (-8) + (-36) = 28.
(v) (8) + (-36) = 44,
{c) (-8) + (36) = -28.

Write a flow chart similar to that in Figure 14.8 of an

algorithm for computing the difference b - ¢ of two integers

b, ¢c.
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14.5 1Iterative Algorithms

Imagine now that the novice sign painter of Section 14,1
received an order for 5 identical PLAN AHEAD signs. He could,
if he chose; plan the entire Job by preparing a flow chart simi-
lar to that of Figure 14.9,

Ruler, pencil, cardboard
paint, brush,

h 4

Measure the board,

v

Count the number, n, of
letters and blanks in
the sign,

]

Divide the length of the
board by the number of
spaces needed to find
the length of each space,

y

Mark off n spaces on the
board each of the required

length,

Paint the letters in the
appropriate spaces,

Place the sign in the
drying rack,

Obtain a new piece of
Q cardboard,
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Mark off n spaces on the
board, each of the required

length,

Paint the letters in the
appropriate spaces,

)

Place the sign in the
drying rack,

il

Obtain a new piece of

cardboard.

Mark off n spaces on the
board, each of the required

length,

Paint the letters in the
appropriate spaces,

d

Place the sign in the

drying rack,

Obtain a new piece of

cardboard.

Mark off n spaces on the
board each of the required

length,

Paint the letters in the
appropriate spaces,

l
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Place the sign in the
drying rack,

il

Obtain a new piece of
cardboard,

B

Mark off n spaces on the
board each of the required

length,

Paint the letters in the
appropriate spaces,

i

Place the sign in the
drying rack.

Figure 14,9
While the chart in Figure 14.9 is not too bad for an order
of 5 signs, certainly a similar chart for an order of 50 signs
would be far too long. In the case of processes which are to be
re peated many times, it is convenient to refer back to that part
of the original chart that describes the repeated process., Thus,
to paint many signs, the painter could use the chart in Figure

14,10,

’ﬁuler, pencil, cardboard,
paint, brush.

|

Measure the board.
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Count the number, n, of
1etters'and blanks in
the sign,

Divide the length of the
board by the number of
spaces needed to find the
length of each space,

Mark off n spaces on the li
board, each of the

required length.

AL Obtain & new

Paint the letters in the piece of
appropriate spaces, cardboard,

Place the sign in the
drying rack.

Figure 14,10

Flow charts of this type are said to contain a loop. The
processes they represent are called iterative or repeating pro-
cesses, Of course, we cannot be sure that the sign painting
process ever will stop. If left alone {and if the cardboard and
paint hold out), the painter could turn cut signs indefinitely.

While many importent mathematical routinea theoretically
are non-terminating, we are concerned principally with algorithms;
that is, with routines which end. The sign painting process is,
in a sense, an algOrithm since no matter how much cardboard and
paint the painter might accumulate, eventually he would run out

(or perhaps die of old age)., Many mathematical routines also
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terminate for logistic reasons., Euecliu's process for finding the
GCD (greatest common divisor) of two positive integers is a good
example, Remember that to determine the GCD of, say, 2, and g,
with a, > a5, first divide a, by g, to cbtain remainder g, ., If
8, = 0, then g, is the GCD of a, and g,. If a, # 0, divide 8,

by &, to obtain remainder a,. If a, = O, then &, is the GCD,

If a, # 0, divide s, by &, tc obtain remainder ag, etec. The flow
chart for this routine is given in Figure 14.11,

21, 8 1n Z
a]>a2>0.

y

Let n = 1; that is
a,=a and a

n+l1~ 8a-

J
Divide a, by a1
to obtain remain- Je=

der NP
add 1 ton
¥
(e tme =™ ”
$Yes

GCD of a,, a is
a

n+1°

Figure 14,11
Notice that like the chart for multiple sign production in

Figure 14,10, the flow chart for Euclid's routine contains a
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loop. You may well ask whether Euclid's routine will terminate
eventually or will continue indefinitely, To see if Euclid's pro-
cess is an algorithm,that is, to see if the routine fterminates,
consider the following example,
Example: Find the GCD of 64 and 42 using Euclid's routine.
First iteration hergg

22 remainder

1
Second iteration 2272
22

20 remainder

Third iteration 20122
"2 remainder
Fourth iteration QF%g'
2% remainder
The GCD is 2,
Since in each iteration the remainder is always less than the
divisor, and since the divisor in any given iteration after the
first is always the remainder in the preceding iteration, the
remainders get smaller and smaller with each iteration, Since
the process involves only non-negative integers, eventually a
remainder of zero must be obtained, Thus, no matter how large the
given numbers. Euclid's process will always produce their GCD in
a finite number of iterations,

It is possible also to transform a non-terminating process
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into an algorithm merely by agreeing to stop after a predeter-
mined number of interations. For example, if the painter were
asked to fill an order for exactly 50 PLAN AHEAD signs, he could
invent some sort of recording scheme or mechanism to tell him
when he had finished the fiftieth sign., 1In flow charts the

symbol

is commonly used for this purpose. The iteration symbol or
"diamond" records the number of times a cycle has been completed
and automatically channels the process out of the loop at the
completion of the prescribed number of iterations. The flow chart
for producing 50 PLAN AHEAD signs would look something like

Figure 14,12,
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/ﬁﬁler, pencil,
cardboard, paint,
brush,

. J
Measure the board.

Y

Count the number, n,
of letters and blanks
in the sign,

A

Divide the length of
the board by the number
of spaces needed, to
find the length of
each space,

A 4

Mark off n spaces on
the board, each of the
required length,

Obtain a Deliver 50
new piece completed
of card- signs.
board,

Paint the i-th sign.

Figure 14,12
As a second example, consider the procedure for finding
the sum of 100 numbers a,, @z, @, «.. s 2199 The flow chart
for this algorithm is shown in Figure 14.13.
We begin by letting the zero-th subtotal be 0, and then

enter the diamond. With i =1, compute §;= S -y + & = So + a8,

O =0+ 2a = 2a,, and re-enter the diamond. With i =2, compute
ERIC |
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Sa = 33, + a3 = a, + &, and re-enter the diamond.

Si00=81+82+. . . +8400

~—

(al 9825 .. 8100 =M Let S,=0, 1 1 109 gg%lzggzl
5,=5,_,+ 8.
Figure 14.3

This time 1 = 3, and we compute Sz = Sa.y + a3 =23, + a2z + as,
and so on. After 100 iterations, S,o0 will be g + ay + ... +

a) pos as required.

14.6 Exercises

1. Write a flow chart for computing n'.

2. Show that a diamond can always be replaced by a combination
of operation boxes and a decision box,

3. Write a flow chart with a diamond for finding the smallest
number among 50 integers.

4L, write a flow chart with a diamond for arranging 50 numbers

in increasing order,

14.7 Truncated Routines and Truncation Criteria

Some processes, while essentially non-terminating, can be

cut off or truncated to produce algorithms. The cut-off point

is determined by means of some truncation criterion. For example,

the sign vainter's drying rack may hold a maximum of, say, 55
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signu, Thus, to fill an order of 50 signs, the painter could

stop painting when the rack was full. This would give him a safety
margin of 5 extra signs just in case some signs were smeared or
bent before delivery, In this case his cut-off criterion would

be "Is the rack full?" A flow chart for a truncated sign painting

routine is shown in Figure 14,14,

Ruler, pencil, cardboard,
paint, brush,
]

Measure the board.

Y
Count the number, ., of
letters and blanks in
the sign,

y

Divide the length o< the
board by the number of
spaces needed, to find the
length of each space.

Y

Mark off n spaces on the
board, each of the _ Obtain & new
required length, piece of
cardboard.

A

Y

Paint the letters in the
appropriate spaces,

1

Place the sign in the
drying rack.

¥
(zs the rack fullf}* No

Yes

Y
[ Deliver the order of signs. ]

Figure 14.1L4
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The truncation criterion 1is recorded in a decision box, since we
use it to decide whether or not to stop the rountire.

There are many examples of truncated routines in elementary
mathematics. The procedure for dividing one number by another,
and carrying out the quotient as a decimal, is a non-terminating
routine which we truncate according to some criterion such as
"to the nearest hundredth" or "to the nearest ten-thouscndth."

Another routine with a similar truncation criterion is use-
ful for findlng a square rooct of a positive number. You know
36,

6 is a square root of 36, In general, if a, b > 0, then b is a

that since 3% = 9, 3 is a sqiare root of 9; and since &2

square root of a, written b =Va, if and only if, b2 = a,

Some square roots, such as V9, V36 and V100 are easy to
finc. Others are more difficult; for example V13,7641 = 3,71.
Still other square roots are, in a sense, impossible. For
example, there is no rational number whoSe square is 2; that is,
V2 is not a rational number., It is possible, however, to find
a rational number g such that g is as close as we wish to 2.

Sir Isaac Newton (1642-1727) devised a routine for obtaining
rational approximations to the square root of any positive number.
To find an approximation to the square root of, say, 2673, using
Newton's method, first estimate what an approximation to V25673
might be, Let our first spproximetfion be 60, (Sixty is not a
good guess, but we will use it anyhow to illustrate that Newton's
routine does not depend on the accuracy «° any approximation.)

If 60 were a good approximation to V2673, divide 2673 by 60 and
obtain the gquotient 44, Since 60 is much greater than 44, we
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conclude that 60 is an overestimate, and that a better approxima-
tion must lie between 44 and 60, Now average 4l and 60, and use
this average, 52, as the second approximation to V2673, If 52 is
a. good approximation to vEGT3, then 52° % 2673, or 52 = 2%%; .
Dividing 2673 by 52, we obtain the quotient 51.4., To get a third,
and still better approximation to V2673, avergge the second
approximation, 52, and the quotient, 51.4, to obtain 51,7. Now
divice 2673 by 51.7 and obtain 51,7. If an approximation to
V2673 were desired "correct to the nearest tenth" then this is
the cut-off point. (See Section 14,8, Exercise 6.) The trunca-
tion criterion could have been "Is the difference between the
estimate and the quotient less than one-tenth?" The third estimate
is 51.7 and the third quotient is 51.7; hence the criterion is
satisfied, and the routine stops.

A flow chart for Newton's routine is show: in Figure 14,15,
While the flow chart in Figure 14,15 will suffice for your

own use, it is probably too abbreviated to be useful with a computer,

[;jre in Z,

Let e be the
first estimate,

Divide a by esti:T

mete to obtain <
quotient,
Is the difference \ Average esti-
between the esti- \ No mate and quo-
mate and the quo- tient to obtain
tient less than new estimate,

o one-tenth?
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Stop
Ja = estimate

L

Figure 14,15

The operation box

Average estimate and
quotient to obtain
new estimate

lacks the detall necessary for the computer, unless the computer
has already been taught to average; that is, unless a routine for
averaging has already been stored in the computer. Fortunately,
the routine of Section 14.2, Exercise 6 is just what is needed.
To illustrate thav this prior rountine is to be used here as a
subroutine, we show in Figure 14,16 an altered portion of the

routine in Figure 14,15,

obtain quotient,

Divide & by
estimate to

Subroutine of
Sction 14,2,
Exercise 6 to

between the esti- mate,

Is the difference \\ find new esti-
No

mate and the quo-
tient less than
one~tenth?

Yes

l]ERJ(j Figure 14,16

398



~ 393 -

Similarly, we replace the operation box

Divide a by estimate to
obtain quotient,

and the decision box

bty appropriate

the estimate and quotient

(fs the difference between)

less than one-tenth?

subroutines, and obtain the flow chart in Fligure

14,17,

a, e in Z

\ 4

Let e be first
estimate,

p

Subroutine of Section 14.8

Exercise 3 with g as divi-|e
dend and the estimate as
divisor to get quotient,

L 4

Subroutine of Section 14.4
Exercise 8 for the diffe-
rence d of the estimate
and quotient,

y

Subroutine of
Section 14,2,
Exercise 6, to
average estimate
and quotient to
get new estimate,

a~

Yes

J

estimate,

Figure 14,17
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The flow chart in Figure 14,17 is satisfactory, not only for our
own paper-and-pencil use, but also for the use by another computer,
either human or electronic, capable of performing the routines

of thls chapter.

14,8 Exercises

l. Write a flow chart for averaging 50 integers which has the
chart of Section 14.3 (for adding two integers) as a sub-
routine,

2, Write a flow chart for finding the GCD of three positive
integers with Euclid's algorithm as a subroutine.

3. Write a flow chart for dividing one integer by another "to
the nearest tenth." Explain why the truncation criterion is
necessary here.

L, 1Imagine that a'grasshopper is 1 unit from a grain of wheat.
On his first jump he lands é unit from the grain, on his
second Jjump he lands % unit from the wheat., In general, on
his n-th jump he lands (%)n units from the wheat. Write a

flow chart for summing the terms of the sequence, é, %, %, I%’

1
T2 e and state a suitable truncation criterion,
5. Given positive integers a, and a;, what does the following

routine do?

Iaq agez, al)a2>0-

!

Use Euclid's algorithm
to obtain the GCD of &, ,8z.
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Compute a, -ay,

Divide &, *a; by GCD of a, ,8z.

=S

6. Let e be an approximation to va obtained by Newton's method.

Use the inequality e < |Va + e| to show that if Ig - e| <

'i%’ then |[Va - e| < l%

~ 4901




Adjacent angles, 157
Algorithm, 367
Angle, 148, 164
straight, 151
zero, 151
acute, 165
obtuse, 165
rignt, 1605
bisector, 165
Anti - symmetric
Axiom, 190

relation, 57

Betweeness, 130, 168
Cartesian graph, 36
Cartesian product, 29,
Complement, 23
Composite numbers, 209
Coordinates, 126
rectangular, 145

32

Data boxes, 370
Decimal
fraction, 286 )
infinite repeating, 296
terminating, 296
Decision box, 3T4
Degree, 155
Dilation, 310
Disjoint sets, 23
Divisibility, 196
Division algorithm, 203
Empty set, U4
Endpoint, 81
Eguivalence class, 60
Equivalence relation,
Euclids algorithm, 228

51

Factor, 151, 212
Fermats little theorem,
Flow charts, 369
Fraction, 2&9
irreducible,

231

250

Graph, 37, 349
rectangular,
cirecle, 350
bar, 351

350

INDEX

402

Group, 355

Halfline, 116
Halfplane, 120
Hexagon, 183

Intersection, 22
Irreflexive, 56
Isometry, 72, 132
Isosceles triangle, 169
Iterative process, 383

Least common denominator, 271

Line Separation Principle,
Midpoint, 127

Nested interval, 294
Null set, 4
Operation boxes, 370
Order property

of the rational numbers,
Out-put boxes, 370

Parallel lines, 95

Partial ordering, 6OU
Partition, 210
Pentagon, 182
Percent, 337

Perfect numbers, 219

Perpendicular, 84, 141
Plane Separation Principle,
Prime numbers, 208

Proof by cases, 205
Proportion, 326

Quadrant, 122
Ratio, 325

Rational number, 249
Ray, 81, 116

interior, 150
Reciprocal, 238, 261
Reflection

in a line, 69, 168

in a point, 92, 172
Reflexive property, U5
Relation, 33, 35, 39

116

280

119



Replacement assumption, 196
Resultant, 358
Rotation, 106

Segment, 82
Set, 1
Shrinkers, 313
Sieve of Eratosthenes, 219
Similar triangles, 337
Slope, 333
Stretchers, 313
Subroutine, 372
Subset,
proper, 8
Symmetric difference, 28
Symmetric property, &b
Symmetry
in a line, 72
in a point, 92
rotational, 107

Theorem, 190

Transitive property, 48

Translation, 101, 135, 175
353, 357

Triaggle in-equality property,
151

Triangle angle sum property,
179

Truncation criteria, 388

Union, 21

Unique factorization property,
215

Universal set, 11

Venn diagram, 12
Vertex, 150, 169
Vertical angles, 158
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